/** * @license * Cesium - https://github.com/CesiumGS/cesium * Version 1.99 * * Copyright 2011-2022 Cesium Contributors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Columbus View (Pat. Pend.) * * Portions licensed separately. * See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details. */ define(['exports', './Check-40d84a28', './defaultValue-135942ca', './Math-efde0c7b'], (function (exports, Check, defaultValue, Math$1) { 'use strict'; /** * A 3D Cartesian point. * @alias Cartesian3 * @constructor * * @param {Number} [x=0.0] The X component. * @param {Number} [y=0.0] The Y component. * @param {Number} [z=0.0] The Z component. * * @see Cartesian2 * @see Cartesian4 * @see Packable */ function Cartesian3(x, y, z) { /** * The X component. * @type {Number} * @default 0.0 */ this.x = defaultValue.defaultValue(x, 0.0); /** * The Y component. * @type {Number} * @default 0.0 */ this.y = defaultValue.defaultValue(y, 0.0); /** * The Z component. * @type {Number} * @default 0.0 */ this.z = defaultValue.defaultValue(z, 0.0); } /** * Converts the provided Spherical into Cartesian3 coordinates. * * @param {Spherical} spherical The Spherical to be converted to Cartesian3. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided. */ Cartesian3.fromSpherical = function (spherical, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("spherical", spherical); //>>includeEnd('debug'); if (!defaultValue.defined(result)) { result = new Cartesian3(); } const clock = spherical.clock; const cone = spherical.cone; const magnitude = defaultValue.defaultValue(spherical.magnitude, 1.0); const radial = magnitude * Math.sin(cone); result.x = radial * Math.cos(clock); result.y = radial * Math.sin(clock); result.z = magnitude * Math.cos(cone); return result; }; /** * Creates a Cartesian3 instance from x, y and z coordinates. * * @param {Number} x The x coordinate. * @param {Number} y The y coordinate. * @param {Number} z The z coordinate. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided. */ Cartesian3.fromElements = function (x, y, z, result) { if (!defaultValue.defined(result)) { return new Cartesian3(x, y, z); } result.x = x; result.y = y; result.z = z; return result; }; /** * Duplicates a Cartesian3 instance. * * @param {Cartesian3} cartesian The Cartesian to duplicate. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided. (Returns undefined if cartesian is undefined) */ Cartesian3.clone = function (cartesian, result) { if (!defaultValue.defined(cartesian)) { return undefined; } if (!defaultValue.defined(result)) { return new Cartesian3(cartesian.x, cartesian.y, cartesian.z); } result.x = cartesian.x; result.y = cartesian.y; result.z = cartesian.z; return result; }; /** * Creates a Cartesian3 instance from an existing Cartesian4. This simply takes the * x, y, and z properties of the Cartesian4 and drops w. * @function * * @param {Cartesian4} cartesian The Cartesian4 instance to create a Cartesian3 instance from. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided. */ Cartesian3.fromCartesian4 = Cartesian3.clone; /** * The number of elements used to pack the object into an array. * @type {Number} */ Cartesian3.packedLength = 3; /** * Stores the provided instance into the provided array. * * @param {Cartesian3} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ Cartesian3.pack = function (value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("value", value); Check.Check.defined("array", array); //>>includeEnd('debug'); startingIndex = defaultValue.defaultValue(startingIndex, 0); array[startingIndex++] = value.x; array[startingIndex++] = value.y; array[startingIndex] = value.z; return array; }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {Cartesian3} [result] The object into which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided. */ Cartesian3.unpack = function (array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined("array", array); //>>includeEnd('debug'); startingIndex = defaultValue.defaultValue(startingIndex, 0); if (!defaultValue.defined(result)) { result = new Cartesian3(); } result.x = array[startingIndex++]; result.y = array[startingIndex++]; result.z = array[startingIndex]; return result; }; /** * Flattens an array of Cartesian3s into an array of components. * * @param {Cartesian3[]} array The array of cartesians to pack. * @param {Number[]} [result] The array onto which to store the result. If this is a typed array, it must have array.length * 3 components, else a {@link DeveloperError} will be thrown. If it is a regular array, it will be resized to have (array.length * 3) elements. * @returns {Number[]} The packed array. */ Cartesian3.packArray = function (array, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined("array", array); //>>includeEnd('debug'); const length = array.length; const resultLength = length * 3; if (!defaultValue.defined(result)) { result = new Array(resultLength); } else if (!Array.isArray(result) && result.length !== resultLength) { //>>includeStart('debug', pragmas.debug); throw new Check.DeveloperError( "If result is a typed array, it must have exactly array.length * 3 elements" ); //>>includeEnd('debug'); } else if (result.length !== resultLength) { result.length = resultLength; } for (let i = 0; i < length; ++i) { Cartesian3.pack(array[i], result, i * 3); } return result; }; /** * Unpacks an array of cartesian components into an array of Cartesian3s. * * @param {Number[]} array The array of components to unpack. * @param {Cartesian3[]} [result] The array onto which to store the result. * @returns {Cartesian3[]} The unpacked array. */ Cartesian3.unpackArray = function (array, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined("array", array); Check.Check.typeOf.number.greaterThanOrEquals("array.length", array.length, 3); if (array.length % 3 !== 0) { throw new Check.DeveloperError("array length must be a multiple of 3."); } //>>includeEnd('debug'); const length = array.length; if (!defaultValue.defined(result)) { result = new Array(length / 3); } else { result.length = length / 3; } for (let i = 0; i < length; i += 3) { const index = i / 3; result[index] = Cartesian3.unpack(array, i, result[index]); } return result; }; /** * Creates a Cartesian3 from three consecutive elements in an array. * @function * * @param {Number[]} array The array whose three consecutive elements correspond to the x, y, and z components, respectively. * @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to the x component. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided. * * @example * // Create a Cartesian3 with (1.0, 2.0, 3.0) * const v = [1.0, 2.0, 3.0]; * const p = Cesium.Cartesian3.fromArray(v); * * // Create a Cartesian3 with (1.0, 2.0, 3.0) using an offset into an array * const v2 = [0.0, 0.0, 1.0, 2.0, 3.0]; * const p2 = Cesium.Cartesian3.fromArray(v2, 2); */ Cartesian3.fromArray = Cartesian3.unpack; /** * Computes the value of the maximum component for the supplied Cartesian. * * @param {Cartesian3} cartesian The cartesian to use. * @returns {Number} The value of the maximum component. */ Cartesian3.maximumComponent = function (cartesian) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("cartesian", cartesian); //>>includeEnd('debug'); return Math.max(cartesian.x, cartesian.y, cartesian.z); }; /** * Computes the value of the minimum component for the supplied Cartesian. * * @param {Cartesian3} cartesian The cartesian to use. * @returns {Number} The value of the minimum component. */ Cartesian3.minimumComponent = function (cartesian) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("cartesian", cartesian); //>>includeEnd('debug'); return Math.min(cartesian.x, cartesian.y, cartesian.z); }; /** * Compares two Cartesians and computes a Cartesian which contains the minimum components of the supplied Cartesians. * * @param {Cartesian3} first A cartesian to compare. * @param {Cartesian3} second A cartesian to compare. * @param {Cartesian3} result The object into which to store the result. * @returns {Cartesian3} A cartesian with the minimum components. */ Cartesian3.minimumByComponent = function (first, second, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("first", first); Check.Check.typeOf.object("second", second); Check.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = Math.min(first.x, second.x); result.y = Math.min(first.y, second.y); result.z = Math.min(first.z, second.z); return result; }; /** * Compares two Cartesians and computes a Cartesian which contains the maximum components of the supplied Cartesians. * * @param {Cartesian3} first A cartesian to compare. * @param {Cartesian3} second A cartesian to compare. * @param {Cartesian3} result The object into which to store the result. * @returns {Cartesian3} A cartesian with the maximum components. */ Cartesian3.maximumByComponent = function (first, second, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("first", first); Check.Check.typeOf.object("second", second); Check.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = Math.max(first.x, second.x); result.y = Math.max(first.y, second.y); result.z = Math.max(first.z, second.z); return result; }; /** * Constrain a value to lie between two values. * * @param {Cartesian3} cartesian The value to clamp. * @param {Cartesian3} min The minimum bound. * @param {Cartesian3} max The maximum bound. * @param {Cartesian3} result The object into which to store the result. * @returns {Cartesian3} The clamped value such that min <= value <= max. */ Cartesian3.clamp = function (value, min, max, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("value", value); Check.Check.typeOf.object("min", min); Check.Check.typeOf.object("max", max); Check.Check.typeOf.object("result", result); //>>includeEnd('debug'); const x = Math$1.CesiumMath.clamp(value.x, min.x, max.x); const y = Math$1.CesiumMath.clamp(value.y, min.y, max.y); const z = Math$1.CesiumMath.clamp(value.z, min.z, max.z); result.x = x; result.y = y; result.z = z; return result; }; /** * Computes the provided Cartesian's squared magnitude. * * @param {Cartesian3} cartesian The Cartesian instance whose squared magnitude is to be computed. * @returns {Number} The squared magnitude. */ Cartesian3.magnitudeSquared = function (cartesian) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("cartesian", cartesian); //>>includeEnd('debug'); return ( cartesian.x * cartesian.x + cartesian.y * cartesian.y + cartesian.z * cartesian.z ); }; /** * Computes the Cartesian's magnitude (length). * * @param {Cartesian3} cartesian The Cartesian instance whose magnitude is to be computed. * @returns {Number} The magnitude. */ Cartesian3.magnitude = function (cartesian) { return Math.sqrt(Cartesian3.magnitudeSquared(cartesian)); }; const distanceScratch = new Cartesian3(); /** * Computes the distance between two points. * * @param {Cartesian3} left The first point to compute the distance from. * @param {Cartesian3} right The second point to compute the distance to. * @returns {Number} The distance between two points. * * @example * // Returns 1.0 * const d = Cesium.Cartesian3.distance(new Cesium.Cartesian3(1.0, 0.0, 0.0), new Cesium.Cartesian3(2.0, 0.0, 0.0)); */ Cartesian3.distance = function (left, right) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("left", left); Check.Check.typeOf.object("right", right); //>>includeEnd('debug'); Cartesian3.subtract(left, right, distanceScratch); return Cartesian3.magnitude(distanceScratch); }; /** * Computes the squared distance between two points. Comparing squared distances * using this function is more efficient than comparing distances using {@link Cartesian3#distance}. * * @param {Cartesian3} left The first point to compute the distance from. * @param {Cartesian3} right The second point to compute the distance to. * @returns {Number} The distance between two points. * * @example * // Returns 4.0, not 2.0 * const d = Cesium.Cartesian3.distanceSquared(new Cesium.Cartesian3(1.0, 0.0, 0.0), new Cesium.Cartesian3(3.0, 0.0, 0.0)); */ Cartesian3.distanceSquared = function (left, right) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("left", left); Check.Check.typeOf.object("right", right); //>>includeEnd('debug'); Cartesian3.subtract(left, right, distanceScratch); return Cartesian3.magnitudeSquared(distanceScratch); }; /** * Computes the normalized form of the supplied Cartesian. * * @param {Cartesian3} cartesian The Cartesian to be normalized. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.normalize = function (cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("cartesian", cartesian); Check.Check.typeOf.object("result", result); //>>includeEnd('debug'); const magnitude = Cartesian3.magnitude(cartesian); result.x = cartesian.x / magnitude; result.y = cartesian.y / magnitude; result.z = cartesian.z / magnitude; //>>includeStart('debug', pragmas.debug); if (isNaN(result.x) || isNaN(result.y) || isNaN(result.z)) { throw new Check.DeveloperError("normalized result is not a number"); } //>>includeEnd('debug'); return result; }; /** * Computes the dot (scalar) product of two Cartesians. * * @param {Cartesian3} left The first Cartesian. * @param {Cartesian3} right The second Cartesian. * @returns {Number} The dot product. */ Cartesian3.dot = function (left, right) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("left", left); Check.Check.typeOf.object("right", right); //>>includeEnd('debug'); return left.x * right.x + left.y * right.y + left.z * right.z; }; /** * Computes the componentwise product of two Cartesians. * * @param {Cartesian3} left The first Cartesian. * @param {Cartesian3} right The second Cartesian. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.multiplyComponents = function (left, right, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("left", left); Check.Check.typeOf.object("right", right); Check.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = left.x * right.x; result.y = left.y * right.y; result.z = left.z * right.z; return result; }; /** * Computes the componentwise quotient of two Cartesians. * * @param {Cartesian3} left The first Cartesian. * @param {Cartesian3} right The second Cartesian. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.divideComponents = function (left, right, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("left", left); Check.Check.typeOf.object("right", right); Check.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = left.x / right.x; result.y = left.y / right.y; result.z = left.z / right.z; return result; }; /** * Computes the componentwise sum of two Cartesians. * * @param {Cartesian3} left The first Cartesian. * @param {Cartesian3} right The second Cartesian. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.add = function (left, right, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("left", left); Check.Check.typeOf.object("right", right); Check.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = left.x + right.x; result.y = left.y + right.y; result.z = left.z + right.z; return result; }; /** * Computes the componentwise difference of two Cartesians. * * @param {Cartesian3} left The first Cartesian. * @param {Cartesian3} right The second Cartesian. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.subtract = function (left, right, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("left", left); Check.Check.typeOf.object("right", right); Check.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = left.x - right.x; result.y = left.y - right.y; result.z = left.z - right.z; return result; }; /** * Multiplies the provided Cartesian componentwise by the provided scalar. * * @param {Cartesian3} cartesian The Cartesian to be scaled. * @param {Number} scalar The scalar to multiply with. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.multiplyByScalar = function (cartesian, scalar, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("cartesian", cartesian); Check.Check.typeOf.number("scalar", scalar); Check.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = cartesian.x * scalar; result.y = cartesian.y * scalar; result.z = cartesian.z * scalar; return result; }; /** * Divides the provided Cartesian componentwise by the provided scalar. * * @param {Cartesian3} cartesian The Cartesian to be divided. * @param {Number} scalar The scalar to divide by. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.divideByScalar = function (cartesian, scalar, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("cartesian", cartesian); Check.Check.typeOf.number("scalar", scalar); Check.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = cartesian.x / scalar; result.y = cartesian.y / scalar; result.z = cartesian.z / scalar; return result; }; /** * Negates the provided Cartesian. * * @param {Cartesian3} cartesian The Cartesian to be negated. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.negate = function (cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("cartesian", cartesian); Check.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = -cartesian.x; result.y = -cartesian.y; result.z = -cartesian.z; return result; }; /** * Computes the absolute value of the provided Cartesian. * * @param {Cartesian3} cartesian The Cartesian whose absolute value is to be computed. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.abs = function (cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("cartesian", cartesian); Check.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = Math.abs(cartesian.x); result.y = Math.abs(cartesian.y); result.z = Math.abs(cartesian.z); return result; }; const lerpScratch = new Cartesian3(); /** * Computes the linear interpolation or extrapolation at t using the provided cartesians. * * @param {Cartesian3} start The value corresponding to t at 0.0. * @param {Cartesian3} end The value corresponding to t at 1.0. * @param {Number} t The point along t at which to interpolate. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.lerp = function (start, end, t, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("start", start); Check.Check.typeOf.object("end", end); Check.Check.typeOf.number("t", t); Check.Check.typeOf.object("result", result); //>>includeEnd('debug'); Cartesian3.multiplyByScalar(end, t, lerpScratch); result = Cartesian3.multiplyByScalar(start, 1.0 - t, result); return Cartesian3.add(lerpScratch, result, result); }; const angleBetweenScratch = new Cartesian3(); const angleBetweenScratch2 = new Cartesian3(); /** * Returns the angle, in radians, between the provided Cartesians. * * @param {Cartesian3} left The first Cartesian. * @param {Cartesian3} right The second Cartesian. * @returns {Number} The angle between the Cartesians. */ Cartesian3.angleBetween = function (left, right) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("left", left); Check.Check.typeOf.object("right", right); //>>includeEnd('debug'); Cartesian3.normalize(left, angleBetweenScratch); Cartesian3.normalize(right, angleBetweenScratch2); const cosine = Cartesian3.dot(angleBetweenScratch, angleBetweenScratch2); const sine = Cartesian3.magnitude( Cartesian3.cross( angleBetweenScratch, angleBetweenScratch2, angleBetweenScratch ) ); return Math.atan2(sine, cosine); }; const mostOrthogonalAxisScratch = new Cartesian3(); /** * Returns the axis that is most orthogonal to the provided Cartesian. * * @param {Cartesian3} cartesian The Cartesian on which to find the most orthogonal axis. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The most orthogonal axis. */ Cartesian3.mostOrthogonalAxis = function (cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("cartesian", cartesian); Check.Check.typeOf.object("result", result); //>>includeEnd('debug'); const f = Cartesian3.normalize(cartesian, mostOrthogonalAxisScratch); Cartesian3.abs(f, f); if (f.x <= f.y) { if (f.x <= f.z) { result = Cartesian3.clone(Cartesian3.UNIT_X, result); } else { result = Cartesian3.clone(Cartesian3.UNIT_Z, result); } } else if (f.y <= f.z) { result = Cartesian3.clone(Cartesian3.UNIT_Y, result); } else { result = Cartesian3.clone(Cartesian3.UNIT_Z, result); } return result; }; /** * Projects vector a onto vector b * @param {Cartesian3} a The vector that needs projecting * @param {Cartesian3} b The vector to project onto * @param {Cartesian3} result The result cartesian * @returns {Cartesian3} The modified result parameter */ Cartesian3.projectVector = function (a, b, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined("a", a); Check.Check.defined("b", b); Check.Check.defined("result", result); //>>includeEnd('debug'); const scalar = Cartesian3.dot(a, b) / Cartesian3.dot(b, b); return Cartesian3.multiplyByScalar(b, scalar, result); }; /** * Compares the provided Cartesians componentwise and returns * true if they are equal, false otherwise. * * @param {Cartesian3} [left] The first Cartesian. * @param {Cartesian3} [right] The second Cartesian. * @returns {Boolean} true if left and right are equal, false otherwise. */ Cartesian3.equals = function (left, right) { return ( left === right || (defaultValue.defined(left) && defaultValue.defined(right) && left.x === right.x && left.y === right.y && left.z === right.z) ); }; /** * @private */ Cartesian3.equalsArray = function (cartesian, array, offset) { return ( cartesian.x === array[offset] && cartesian.y === array[offset + 1] && cartesian.z === array[offset + 2] ); }; /** * Compares the provided Cartesians componentwise and returns * true if they pass an absolute or relative tolerance test, * false otherwise. * * @param {Cartesian3} [left] The first Cartesian. * @param {Cartesian3} [right] The second Cartesian. * @param {Number} [relativeEpsilon=0] The relative epsilon tolerance to use for equality testing. * @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing. * @returns {Boolean} true if left and right are within the provided epsilon, false otherwise. */ Cartesian3.equalsEpsilon = function ( left, right, relativeEpsilon, absoluteEpsilon ) { return ( left === right || (defaultValue.defined(left) && defaultValue.defined(right) && Math$1.CesiumMath.equalsEpsilon( left.x, right.x, relativeEpsilon, absoluteEpsilon ) && Math$1.CesiumMath.equalsEpsilon( left.y, right.y, relativeEpsilon, absoluteEpsilon ) && Math$1.CesiumMath.equalsEpsilon( left.z, right.z, relativeEpsilon, absoluteEpsilon )) ); }; /** * Computes the cross (outer) product of two Cartesians. * * @param {Cartesian3} left The first Cartesian. * @param {Cartesian3} right The second Cartesian. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The cross product. */ Cartesian3.cross = function (left, right, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("left", left); Check.Check.typeOf.object("right", right); Check.Check.typeOf.object("result", result); //>>includeEnd('debug'); const leftX = left.x; const leftY = left.y; const leftZ = left.z; const rightX = right.x; const rightY = right.y; const rightZ = right.z; const x = leftY * rightZ - leftZ * rightY; const y = leftZ * rightX - leftX * rightZ; const z = leftX * rightY - leftY * rightX; result.x = x; result.y = y; result.z = z; return result; }; /** * Computes the midpoint between the right and left Cartesian. * @param {Cartesian3} left The first Cartesian. * @param {Cartesian3} right The second Cartesian. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The midpoint. */ Cartesian3.midpoint = function (left, right, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("left", left); Check.Check.typeOf.object("right", right); Check.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = (left.x + right.x) * 0.5; result.y = (left.y + right.y) * 0.5; result.z = (left.z + right.z) * 0.5; return result; }; /** * Returns a Cartesian3 position from longitude and latitude values given in degrees. * * @param {Number} longitude The longitude, in degrees * @param {Number} latitude The latitude, in degrees * @param {Number} [height=0.0] The height, in meters, above the ellipsoid. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the position lies. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The position * * @example * const position = Cesium.Cartesian3.fromDegrees(-115.0, 37.0); */ Cartesian3.fromDegrees = function ( longitude, latitude, height, ellipsoid, result ) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number("longitude", longitude); Check.Check.typeOf.number("latitude", latitude); //>>includeEnd('debug'); longitude = Math$1.CesiumMath.toRadians(longitude); latitude = Math$1.CesiumMath.toRadians(latitude); return Cartesian3.fromRadians(longitude, latitude, height, ellipsoid, result); }; let scratchN = new Cartesian3(); let scratchK = new Cartesian3(); const wgs84RadiiSquared = new Cartesian3( 6378137.0 * 6378137.0, 6378137.0 * 6378137.0, 6356752.3142451793 * 6356752.3142451793 ); /** * Returns a Cartesian3 position from longitude and latitude values given in radians. * * @param {Number} longitude The longitude, in radians * @param {Number} latitude The latitude, in radians * @param {Number} [height=0.0] The height, in meters, above the ellipsoid. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the position lies. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The position * * @example * const position = Cesium.Cartesian3.fromRadians(-2.007, 0.645); */ Cartesian3.fromRadians = function ( longitude, latitude, height, ellipsoid, result ) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number("longitude", longitude); Check.Check.typeOf.number("latitude", latitude); //>>includeEnd('debug'); height = defaultValue.defaultValue(height, 0.0); const radiiSquared = defaultValue.defined(ellipsoid) ? ellipsoid.radiiSquared : wgs84RadiiSquared; const cosLatitude = Math.cos(latitude); scratchN.x = cosLatitude * Math.cos(longitude); scratchN.y = cosLatitude * Math.sin(longitude); scratchN.z = Math.sin(latitude); scratchN = Cartesian3.normalize(scratchN, scratchN); Cartesian3.multiplyComponents(radiiSquared, scratchN, scratchK); const gamma = Math.sqrt(Cartesian3.dot(scratchN, scratchK)); scratchK = Cartesian3.divideByScalar(scratchK, gamma, scratchK); scratchN = Cartesian3.multiplyByScalar(scratchN, height, scratchN); if (!defaultValue.defined(result)) { result = new Cartesian3(); } return Cartesian3.add(scratchK, scratchN, result); }; /** * Returns an array of Cartesian3 positions given an array of longitude and latitude values given in degrees. * * @param {Number[]} coordinates A list of longitude and latitude values. Values alternate [longitude, latitude, longitude, latitude...]. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the coordinates lie. * @param {Cartesian3[]} [result] An array of Cartesian3 objects to store the result. * @returns {Cartesian3[]} The array of positions. * * @example * const positions = Cesium.Cartesian3.fromDegreesArray([-115.0, 37.0, -107.0, 33.0]); */ Cartesian3.fromDegreesArray = function (coordinates, ellipsoid, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined("coordinates", coordinates); if (coordinates.length < 2 || coordinates.length % 2 !== 0) { throw new Check.DeveloperError( "the number of coordinates must be a multiple of 2 and at least 2" ); } //>>includeEnd('debug'); const length = coordinates.length; if (!defaultValue.defined(result)) { result = new Array(length / 2); } else { result.length = length / 2; } for (let i = 0; i < length; i += 2) { const longitude = coordinates[i]; const latitude = coordinates[i + 1]; const index = i / 2; result[index] = Cartesian3.fromDegrees( longitude, latitude, 0, ellipsoid, result[index] ); } return result; }; /** * Returns an array of Cartesian3 positions given an array of longitude and latitude values given in radians. * * @param {Number[]} coordinates A list of longitude and latitude values. Values alternate [longitude, latitude, longitude, latitude...]. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the coordinates lie. * @param {Cartesian3[]} [result] An array of Cartesian3 objects to store the result. * @returns {Cartesian3[]} The array of positions. * * @example * const positions = Cesium.Cartesian3.fromRadiansArray([-2.007, 0.645, -1.867, .575]); */ Cartesian3.fromRadiansArray = function (coordinates, ellipsoid, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined("coordinates", coordinates); if (coordinates.length < 2 || coordinates.length % 2 !== 0) { throw new Check.DeveloperError( "the number of coordinates must be a multiple of 2 and at least 2" ); } //>>includeEnd('debug'); const length = coordinates.length; if (!defaultValue.defined(result)) { result = new Array(length / 2); } else { result.length = length / 2; } for (let i = 0; i < length; i += 2) { const longitude = coordinates[i]; const latitude = coordinates[i + 1]; const index = i / 2; result[index] = Cartesian3.fromRadians( longitude, latitude, 0, ellipsoid, result[index] ); } return result; }; /** * Returns an array of Cartesian3 positions given an array of longitude, latitude and height values where longitude and latitude are given in degrees. * * @param {Number[]} coordinates A list of longitude, latitude and height values. Values alternate [longitude, latitude, height, longitude, latitude, height...]. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the position lies. * @param {Cartesian3[]} [result] An array of Cartesian3 objects to store the result. * @returns {Cartesian3[]} The array of positions. * * @example * const positions = Cesium.Cartesian3.fromDegreesArrayHeights([-115.0, 37.0, 100000.0, -107.0, 33.0, 150000.0]); */ Cartesian3.fromDegreesArrayHeights = function (coordinates, ellipsoid, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined("coordinates", coordinates); if (coordinates.length < 3 || coordinates.length % 3 !== 0) { throw new Check.DeveloperError( "the number of coordinates must be a multiple of 3 and at least 3" ); } //>>includeEnd('debug'); const length = coordinates.length; if (!defaultValue.defined(result)) { result = new Array(length / 3); } else { result.length = length / 3; } for (let i = 0; i < length; i += 3) { const longitude = coordinates[i]; const latitude = coordinates[i + 1]; const height = coordinates[i + 2]; const index = i / 3; result[index] = Cartesian3.fromDegrees( longitude, latitude, height, ellipsoid, result[index] ); } return result; }; /** * Returns an array of Cartesian3 positions given an array of longitude, latitude and height values where longitude and latitude are given in radians. * * @param {Number[]} coordinates A list of longitude, latitude and height values. Values alternate [longitude, latitude, height, longitude, latitude, height...]. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the position lies. * @param {Cartesian3[]} [result] An array of Cartesian3 objects to store the result. * @returns {Cartesian3[]} The array of positions. * * @example * const positions = Cesium.Cartesian3.fromRadiansArrayHeights([-2.007, 0.645, 100000.0, -1.867, .575, 150000.0]); */ Cartesian3.fromRadiansArrayHeights = function (coordinates, ellipsoid, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined("coordinates", coordinates); if (coordinates.length < 3 || coordinates.length % 3 !== 0) { throw new Check.DeveloperError( "the number of coordinates must be a multiple of 3 and at least 3" ); } //>>includeEnd('debug'); const length = coordinates.length; if (!defaultValue.defined(result)) { result = new Array(length / 3); } else { result.length = length / 3; } for (let i = 0; i < length; i += 3) { const longitude = coordinates[i]; const latitude = coordinates[i + 1]; const height = coordinates[i + 2]; const index = i / 3; result[index] = Cartesian3.fromRadians( longitude, latitude, height, ellipsoid, result[index] ); } return result; }; /** * An immutable Cartesian3 instance initialized to (0.0, 0.0, 0.0). * * @type {Cartesian3} * @constant */ Cartesian3.ZERO = Object.freeze(new Cartesian3(0.0, 0.0, 0.0)); /** * An immutable Cartesian3 instance initialized to (1.0, 1.0, 1.0). * * @type {Cartesian3} * @constant */ Cartesian3.ONE = Object.freeze(new Cartesian3(1.0, 1.0, 1.0)); /** * An immutable Cartesian3 instance initialized to (1.0, 0.0, 0.0). * * @type {Cartesian3} * @constant */ Cartesian3.UNIT_X = Object.freeze(new Cartesian3(1.0, 0.0, 0.0)); /** * An immutable Cartesian3 instance initialized to (0.0, 1.0, 0.0). * * @type {Cartesian3} * @constant */ Cartesian3.UNIT_Y = Object.freeze(new Cartesian3(0.0, 1.0, 0.0)); /** * An immutable Cartesian3 instance initialized to (0.0, 0.0, 1.0). * * @type {Cartesian3} * @constant */ Cartesian3.UNIT_Z = Object.freeze(new Cartesian3(0.0, 0.0, 1.0)); /** * Duplicates this Cartesian3 instance. * * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided. */ Cartesian3.prototype.clone = function (result) { return Cartesian3.clone(this, result); }; /** * Compares this Cartesian against the provided Cartesian componentwise and returns * true if they are equal, false otherwise. * * @param {Cartesian3} [right] The right hand side Cartesian. * @returns {Boolean} true if they are equal, false otherwise. */ Cartesian3.prototype.equals = function (right) { return Cartesian3.equals(this, right); }; /** * Compares this Cartesian against the provided Cartesian componentwise and returns * true if they pass an absolute or relative tolerance test, * false otherwise. * * @param {Cartesian3} [right] The right hand side Cartesian. * @param {Number} [relativeEpsilon=0] The relative epsilon tolerance to use for equality testing. * @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing. * @returns {Boolean} true if they are within the provided epsilon, false otherwise. */ Cartesian3.prototype.equalsEpsilon = function ( right, relativeEpsilon, absoluteEpsilon ) { return Cartesian3.equalsEpsilon( this, right, relativeEpsilon, absoluteEpsilon ); }; /** * Creates a string representing this Cartesian in the format '(x, y, z)'. * * @returns {String} A string representing this Cartesian in the format '(x, y, z)'. */ Cartesian3.prototype.toString = function () { return `(${this.x}, ${this.y}, ${this.z})`; }; const scaleToGeodeticSurfaceIntersection = new Cartesian3(); const scaleToGeodeticSurfaceGradient = new Cartesian3(); /** * Scales the provided Cartesian position along the geodetic surface normal * so that it is on the surface of this ellipsoid. If the position is * at the center of the ellipsoid, this function returns undefined. * * @param {Cartesian3} cartesian The Cartesian position to scale. * @param {Cartesian3} oneOverRadii One over radii of the ellipsoid. * @param {Cartesian3} oneOverRadiiSquared One over radii squared of the ellipsoid. * @param {Number} centerToleranceSquared Tolerance for closeness to the center. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter, a new Cartesian3 instance if none was provided, or undefined if the position is at the center. * * @function scaleToGeodeticSurface * * @private */ function scaleToGeodeticSurface( cartesian, oneOverRadii, oneOverRadiiSquared, centerToleranceSquared, result ) { //>>includeStart('debug', pragmas.debug); if (!defaultValue.defined(cartesian)) { throw new Check.DeveloperError("cartesian is required."); } if (!defaultValue.defined(oneOverRadii)) { throw new Check.DeveloperError("oneOverRadii is required."); } if (!defaultValue.defined(oneOverRadiiSquared)) { throw new Check.DeveloperError("oneOverRadiiSquared is required."); } if (!defaultValue.defined(centerToleranceSquared)) { throw new Check.DeveloperError("centerToleranceSquared is required."); } //>>includeEnd('debug'); const positionX = cartesian.x; const positionY = cartesian.y; const positionZ = cartesian.z; const oneOverRadiiX = oneOverRadii.x; const oneOverRadiiY = oneOverRadii.y; const oneOverRadiiZ = oneOverRadii.z; const x2 = positionX * positionX * oneOverRadiiX * oneOverRadiiX; const y2 = positionY * positionY * oneOverRadiiY * oneOverRadiiY; const z2 = positionZ * positionZ * oneOverRadiiZ * oneOverRadiiZ; // Compute the squared ellipsoid norm. const squaredNorm = x2 + y2 + z2; const ratio = Math.sqrt(1.0 / squaredNorm); // As an initial approximation, assume that the radial intersection is the projection point. const intersection = Cartesian3.multiplyByScalar( cartesian, ratio, scaleToGeodeticSurfaceIntersection ); // If the position is near the center, the iteration will not converge. if (squaredNorm < centerToleranceSquared) { return !isFinite(ratio) ? undefined : Cartesian3.clone(intersection, result); } const oneOverRadiiSquaredX = oneOverRadiiSquared.x; const oneOverRadiiSquaredY = oneOverRadiiSquared.y; const oneOverRadiiSquaredZ = oneOverRadiiSquared.z; // Use the gradient at the intersection point in place of the true unit normal. // The difference in magnitude will be absorbed in the multiplier. const gradient = scaleToGeodeticSurfaceGradient; gradient.x = intersection.x * oneOverRadiiSquaredX * 2.0; gradient.y = intersection.y * oneOverRadiiSquaredY * 2.0; gradient.z = intersection.z * oneOverRadiiSquaredZ * 2.0; // Compute the initial guess at the normal vector multiplier, lambda. let lambda = ((1.0 - ratio) * Cartesian3.magnitude(cartesian)) / (0.5 * Cartesian3.magnitude(gradient)); let correction = 0.0; let func; let denominator; let xMultiplier; let yMultiplier; let zMultiplier; let xMultiplier2; let yMultiplier2; let zMultiplier2; let xMultiplier3; let yMultiplier3; let zMultiplier3; do { lambda -= correction; xMultiplier = 1.0 / (1.0 + lambda * oneOverRadiiSquaredX); yMultiplier = 1.0 / (1.0 + lambda * oneOverRadiiSquaredY); zMultiplier = 1.0 / (1.0 + lambda * oneOverRadiiSquaredZ); xMultiplier2 = xMultiplier * xMultiplier; yMultiplier2 = yMultiplier * yMultiplier; zMultiplier2 = zMultiplier * zMultiplier; xMultiplier3 = xMultiplier2 * xMultiplier; yMultiplier3 = yMultiplier2 * yMultiplier; zMultiplier3 = zMultiplier2 * zMultiplier; func = x2 * xMultiplier2 + y2 * yMultiplier2 + z2 * zMultiplier2 - 1.0; // "denominator" here refers to the use of this expression in the velocity and acceleration // computations in the sections to follow. denominator = x2 * xMultiplier3 * oneOverRadiiSquaredX + y2 * yMultiplier3 * oneOverRadiiSquaredY + z2 * zMultiplier3 * oneOverRadiiSquaredZ; const derivative = -2.0 * denominator; correction = func / derivative; } while (Math.abs(func) > Math$1.CesiumMath.EPSILON12); if (!defaultValue.defined(result)) { return new Cartesian3( positionX * xMultiplier, positionY * yMultiplier, positionZ * zMultiplier ); } result.x = positionX * xMultiplier; result.y = positionY * yMultiplier; result.z = positionZ * zMultiplier; return result; } /** * A position defined by longitude, latitude, and height. * @alias Cartographic * @constructor * * @param {Number} [longitude=0.0] The longitude, in radians. * @param {Number} [latitude=0.0] The latitude, in radians. * @param {Number} [height=0.0] The height, in meters, above the ellipsoid. * * @see Ellipsoid */ function Cartographic(longitude, latitude, height) { /** * The longitude, in radians. * @type {Number} * @default 0.0 */ this.longitude = defaultValue.defaultValue(longitude, 0.0); /** * The latitude, in radians. * @type {Number} * @default 0.0 */ this.latitude = defaultValue.defaultValue(latitude, 0.0); /** * The height, in meters, above the ellipsoid. * @type {Number} * @default 0.0 */ this.height = defaultValue.defaultValue(height, 0.0); } /** * Creates a new Cartographic instance from longitude and latitude * specified in radians. * * @param {Number} longitude The longitude, in radians. * @param {Number} latitude The latitude, in radians. * @param {Number} [height=0.0] The height, in meters, above the ellipsoid. * @param {Cartographic} [result] The object onto which to store the result. * @returns {Cartographic} The modified result parameter or a new Cartographic instance if one was not provided. */ Cartographic.fromRadians = function (longitude, latitude, height, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number("longitude", longitude); Check.Check.typeOf.number("latitude", latitude); //>>includeEnd('debug'); height = defaultValue.defaultValue(height, 0.0); if (!defaultValue.defined(result)) { return new Cartographic(longitude, latitude, height); } result.longitude = longitude; result.latitude = latitude; result.height = height; return result; }; /** * Creates a new Cartographic instance from longitude and latitude * specified in degrees. The values in the resulting object will * be in radians. * * @param {Number} longitude The longitude, in degrees. * @param {Number} latitude The latitude, in degrees. * @param {Number} [height=0.0] The height, in meters, above the ellipsoid. * @param {Cartographic} [result] The object onto which to store the result. * @returns {Cartographic} The modified result parameter or a new Cartographic instance if one was not provided. */ Cartographic.fromDegrees = function (longitude, latitude, height, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number("longitude", longitude); Check.Check.typeOf.number("latitude", latitude); //>>includeEnd('debug'); longitude = Math$1.CesiumMath.toRadians(longitude); latitude = Math$1.CesiumMath.toRadians(latitude); return Cartographic.fromRadians(longitude, latitude, height, result); }; const cartesianToCartographicN$1 = new Cartesian3(); const cartesianToCartographicP$1 = new Cartesian3(); const cartesianToCartographicH$1 = new Cartesian3(); const wgs84OneOverRadii = new Cartesian3( 1.0 / 6378137.0, 1.0 / 6378137.0, 1.0 / 6356752.3142451793 ); const wgs84OneOverRadiiSquared = new Cartesian3( 1.0 / (6378137.0 * 6378137.0), 1.0 / (6378137.0 * 6378137.0), 1.0 / (6356752.3142451793 * 6356752.3142451793) ); const wgs84CenterToleranceSquared = Math$1.CesiumMath.EPSILON1; /** * Creates a new Cartographic instance from a Cartesian position. The values in the * resulting object will be in radians. * * @param {Cartesian3} cartesian The Cartesian position to convert to cartographic representation. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the position lies. * @param {Cartographic} [result] The object onto which to store the result. * @returns {Cartographic} The modified result parameter, new Cartographic instance if none was provided, or undefined if the cartesian is at the center of the ellipsoid. */ Cartographic.fromCartesian = function (cartesian, ellipsoid, result) { const oneOverRadii = defaultValue.defined(ellipsoid) ? ellipsoid.oneOverRadii : wgs84OneOverRadii; const oneOverRadiiSquared = defaultValue.defined(ellipsoid) ? ellipsoid.oneOverRadiiSquared : wgs84OneOverRadiiSquared; const centerToleranceSquared = defaultValue.defined(ellipsoid) ? ellipsoid._centerToleranceSquared : wgs84CenterToleranceSquared; //`cartesian is required.` is thrown from scaleToGeodeticSurface const p = scaleToGeodeticSurface( cartesian, oneOverRadii, oneOverRadiiSquared, centerToleranceSquared, cartesianToCartographicP$1 ); if (!defaultValue.defined(p)) { return undefined; } let n = Cartesian3.multiplyComponents( p, oneOverRadiiSquared, cartesianToCartographicN$1 ); n = Cartesian3.normalize(n, n); const h = Cartesian3.subtract(cartesian, p, cartesianToCartographicH$1); const longitude = Math.atan2(n.y, n.x); const latitude = Math.asin(n.z); const height = Math$1.CesiumMath.sign(Cartesian3.dot(h, cartesian)) * Cartesian3.magnitude(h); if (!defaultValue.defined(result)) { return new Cartographic(longitude, latitude, height); } result.longitude = longitude; result.latitude = latitude; result.height = height; return result; }; /** * Creates a new Cartesian3 instance from a Cartographic input. The values in the inputted * object should be in radians. * * @param {Cartographic} cartographic Input to be converted into a Cartesian3 output. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the position lies. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The position */ Cartographic.toCartesian = function (cartographic, ellipsoid, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined("cartographic", cartographic); //>>includeEnd('debug'); return Cartesian3.fromRadians( cartographic.longitude, cartographic.latitude, cartographic.height, ellipsoid, result ); }; /** * Duplicates a Cartographic instance. * * @param {Cartographic} cartographic The cartographic to duplicate. * @param {Cartographic} [result] The object onto which to store the result. * @returns {Cartographic} The modified result parameter or a new Cartographic instance if one was not provided. (Returns undefined if cartographic is undefined) */ Cartographic.clone = function (cartographic, result) { if (!defaultValue.defined(cartographic)) { return undefined; } if (!defaultValue.defined(result)) { return new Cartographic( cartographic.longitude, cartographic.latitude, cartographic.height ); } result.longitude = cartographic.longitude; result.latitude = cartographic.latitude; result.height = cartographic.height; return result; }; /** * Compares the provided cartographics componentwise and returns * true if they are equal, false otherwise. * * @param {Cartographic} [left] The first cartographic. * @param {Cartographic} [right] The second cartographic. * @returns {Boolean} true if left and right are equal, false otherwise. */ Cartographic.equals = function (left, right) { return ( left === right || (defaultValue.defined(left) && defaultValue.defined(right) && left.longitude === right.longitude && left.latitude === right.latitude && left.height === right.height) ); }; /** * Compares the provided cartographics componentwise and returns * true if they are within the provided epsilon, * false otherwise. * * @param {Cartographic} [left] The first cartographic. * @param {Cartographic} [right] The second cartographic. * @param {Number} [epsilon=0] The epsilon to use for equality testing. * @returns {Boolean} true if left and right are within the provided epsilon, false otherwise. */ Cartographic.equalsEpsilon = function (left, right, epsilon) { epsilon = defaultValue.defaultValue(epsilon, 0); return ( left === right || (defaultValue.defined(left) && defaultValue.defined(right) && Math.abs(left.longitude - right.longitude) <= epsilon && Math.abs(left.latitude - right.latitude) <= epsilon && Math.abs(left.height - right.height) <= epsilon) ); }; /** * An immutable Cartographic instance initialized to (0.0, 0.0, 0.0). * * @type {Cartographic} * @constant */ Cartographic.ZERO = Object.freeze(new Cartographic(0.0, 0.0, 0.0)); /** * Duplicates this instance. * * @param {Cartographic} [result] The object onto which to store the result. * @returns {Cartographic} The modified result parameter or a new Cartographic instance if one was not provided. */ Cartographic.prototype.clone = function (result) { return Cartographic.clone(this, result); }; /** * Compares the provided against this cartographic componentwise and returns * true if they are equal, false otherwise. * * @param {Cartographic} [right] The second cartographic. * @returns {Boolean} true if left and right are equal, false otherwise. */ Cartographic.prototype.equals = function (right) { return Cartographic.equals(this, right); }; /** * Compares the provided against this cartographic componentwise and returns * true if they are within the provided epsilon, * false otherwise. * * @param {Cartographic} [right] The second cartographic. * @param {Number} [epsilon=0] The epsilon to use for equality testing. * @returns {Boolean} true if left and right are within the provided epsilon, false otherwise. */ Cartographic.prototype.equalsEpsilon = function (right, epsilon) { return Cartographic.equalsEpsilon(this, right, epsilon); }; /** * Creates a string representing this cartographic in the format '(longitude, latitude, height)'. * * @returns {String} A string representing the provided cartographic in the format '(longitude, latitude, height)'. */ Cartographic.prototype.toString = function () { return `(${this.longitude}, ${this.latitude}, ${this.height})`; }; function initialize(ellipsoid, x, y, z) { x = defaultValue.defaultValue(x, 0.0); y = defaultValue.defaultValue(y, 0.0); z = defaultValue.defaultValue(z, 0.0); //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number.greaterThanOrEquals("x", x, 0.0); Check.Check.typeOf.number.greaterThanOrEquals("y", y, 0.0); Check.Check.typeOf.number.greaterThanOrEquals("z", z, 0.0); //>>includeEnd('debug'); ellipsoid._radii = new Cartesian3(x, y, z); ellipsoid._radiiSquared = new Cartesian3(x * x, y * y, z * z); ellipsoid._radiiToTheFourth = new Cartesian3( x * x * x * x, y * y * y * y, z * z * z * z ); ellipsoid._oneOverRadii = new Cartesian3( x === 0.0 ? 0.0 : 1.0 / x, y === 0.0 ? 0.0 : 1.0 / y, z === 0.0 ? 0.0 : 1.0 / z ); ellipsoid._oneOverRadiiSquared = new Cartesian3( x === 0.0 ? 0.0 : 1.0 / (x * x), y === 0.0 ? 0.0 : 1.0 / (y * y), z === 0.0 ? 0.0 : 1.0 / (z * z) ); ellipsoid._minimumRadius = Math.min(x, y, z); ellipsoid._maximumRadius = Math.max(x, y, z); ellipsoid._centerToleranceSquared = Math$1.CesiumMath.EPSILON1; if (ellipsoid._radiiSquared.z !== 0) { ellipsoid._squaredXOverSquaredZ = ellipsoid._radiiSquared.x / ellipsoid._radiiSquared.z; } } /** * A quadratic surface defined in Cartesian coordinates by the equation * (x / a)^2 + (y / b)^2 + (z / c)^2 = 1. Primarily used * by Cesium to represent the shape of planetary bodies. * * Rather than constructing this object directly, one of the provided * constants is normally used. * @alias Ellipsoid * @constructor * * @param {Number} [x=0] The radius in the x direction. * @param {Number} [y=0] The radius in the y direction. * @param {Number} [z=0] The radius in the z direction. * * @exception {DeveloperError} All radii components must be greater than or equal to zero. * * @see Ellipsoid.fromCartesian3 * @see Ellipsoid.WGS84 * @see Ellipsoid.UNIT_SPHERE */ function Ellipsoid(x, y, z) { this._radii = undefined; this._radiiSquared = undefined; this._radiiToTheFourth = undefined; this._oneOverRadii = undefined; this._oneOverRadiiSquared = undefined; this._minimumRadius = undefined; this._maximumRadius = undefined; this._centerToleranceSquared = undefined; this._squaredXOverSquaredZ = undefined; initialize(this, x, y, z); } Object.defineProperties(Ellipsoid.prototype, { /** * Gets the radii of the ellipsoid. * @memberof Ellipsoid.prototype * @type {Cartesian3} * @readonly */ radii: { get: function () { return this._radii; }, }, /** * Gets the squared radii of the ellipsoid. * @memberof Ellipsoid.prototype * @type {Cartesian3} * @readonly */ radiiSquared: { get: function () { return this._radiiSquared; }, }, /** * Gets the radii of the ellipsoid raise to the fourth power. * @memberof Ellipsoid.prototype * @type {Cartesian3} * @readonly */ radiiToTheFourth: { get: function () { return this._radiiToTheFourth; }, }, /** * Gets one over the radii of the ellipsoid. * @memberof Ellipsoid.prototype * @type {Cartesian3} * @readonly */ oneOverRadii: { get: function () { return this._oneOverRadii; }, }, /** * Gets one over the squared radii of the ellipsoid. * @memberof Ellipsoid.prototype * @type {Cartesian3} * @readonly */ oneOverRadiiSquared: { get: function () { return this._oneOverRadiiSquared; }, }, /** * Gets the minimum radius of the ellipsoid. * @memberof Ellipsoid.prototype * @type {Number} * @readonly */ minimumRadius: { get: function () { return this._minimumRadius; }, }, /** * Gets the maximum radius of the ellipsoid. * @memberof Ellipsoid.prototype * @type {Number} * @readonly */ maximumRadius: { get: function () { return this._maximumRadius; }, }, }); /** * Duplicates an Ellipsoid instance. * * @param {Ellipsoid} ellipsoid The ellipsoid to duplicate. * @param {Ellipsoid} [result] The object onto which to store the result, or undefined if a new * instance should be created. * @returns {Ellipsoid} The cloned Ellipsoid. (Returns undefined if ellipsoid is undefined) */ Ellipsoid.clone = function (ellipsoid, result) { if (!defaultValue.defined(ellipsoid)) { return undefined; } const radii = ellipsoid._radii; if (!defaultValue.defined(result)) { return new Ellipsoid(radii.x, radii.y, radii.z); } Cartesian3.clone(radii, result._radii); Cartesian3.clone(ellipsoid._radiiSquared, result._radiiSquared); Cartesian3.clone(ellipsoid._radiiToTheFourth, result._radiiToTheFourth); Cartesian3.clone(ellipsoid._oneOverRadii, result._oneOverRadii); Cartesian3.clone(ellipsoid._oneOverRadiiSquared, result._oneOverRadiiSquared); result._minimumRadius = ellipsoid._minimumRadius; result._maximumRadius = ellipsoid._maximumRadius; result._centerToleranceSquared = ellipsoid._centerToleranceSquared; return result; }; /** * Computes an Ellipsoid from a Cartesian specifying the radii in x, y, and z directions. * * @param {Cartesian3} [cartesian=Cartesian3.ZERO] The ellipsoid's radius in the x, y, and z directions. * @param {Ellipsoid} [result] The object onto which to store the result, or undefined if a new * instance should be created. * @returns {Ellipsoid} A new Ellipsoid instance. * * @exception {DeveloperError} All radii components must be greater than or equal to zero. * * @see Ellipsoid.WGS84 * @see Ellipsoid.UNIT_SPHERE */ Ellipsoid.fromCartesian3 = function (cartesian, result) { if (!defaultValue.defined(result)) { result = new Ellipsoid(); } if (!defaultValue.defined(cartesian)) { return result; } initialize(result, cartesian.x, cartesian.y, cartesian.z); return result; }; /** * An Ellipsoid instance initialized to the WGS84 standard. * * @type {Ellipsoid} * @constant */ Ellipsoid.WGS84 = Object.freeze( new Ellipsoid(6378137.0, 6378137.0, 6356752.3142451793) ); /** * An Ellipsoid instance initialized to radii of (1.0, 1.0, 1.0). * * @type {Ellipsoid} * @constant */ Ellipsoid.UNIT_SPHERE = Object.freeze(new Ellipsoid(1.0, 1.0, 1.0)); /** * An Ellipsoid instance initialized to a sphere with the lunar radius. * * @type {Ellipsoid} * @constant */ Ellipsoid.MOON = Object.freeze( new Ellipsoid( Math$1.CesiumMath.LUNAR_RADIUS, Math$1.CesiumMath.LUNAR_RADIUS, Math$1.CesiumMath.LUNAR_RADIUS ) ); /** * Duplicates an Ellipsoid instance. * * @param {Ellipsoid} [result] The object onto which to store the result, or undefined if a new * instance should be created. * @returns {Ellipsoid} The cloned Ellipsoid. */ Ellipsoid.prototype.clone = function (result) { return Ellipsoid.clone(this, result); }; /** * The number of elements used to pack the object into an array. * @type {Number} */ Ellipsoid.packedLength = Cartesian3.packedLength; /** * Stores the provided instance into the provided array. * * @param {Ellipsoid} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ Ellipsoid.pack = function (value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("value", value); Check.Check.defined("array", array); //>>includeEnd('debug'); startingIndex = defaultValue.defaultValue(startingIndex, 0); Cartesian3.pack(value._radii, array, startingIndex); return array; }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {Ellipsoid} [result] The object into which to store the result. * @returns {Ellipsoid} The modified result parameter or a new Ellipsoid instance if one was not provided. */ Ellipsoid.unpack = function (array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined("array", array); //>>includeEnd('debug'); startingIndex = defaultValue.defaultValue(startingIndex, 0); const radii = Cartesian3.unpack(array, startingIndex); return Ellipsoid.fromCartesian3(radii, result); }; /** * Computes the unit vector directed from the center of this ellipsoid toward the provided Cartesian position. * @function * * @param {Cartesian3} cartesian The Cartesian for which to to determine the geocentric normal. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if none was provided. */ Ellipsoid.prototype.geocentricSurfaceNormal = Cartesian3.normalize; /** * Computes the normal of the plane tangent to the surface of the ellipsoid at the provided position. * * @param {Cartographic} cartographic The cartographic position for which to to determine the geodetic normal. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if none was provided. */ Ellipsoid.prototype.geodeticSurfaceNormalCartographic = function ( cartographic, result ) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("cartographic", cartographic); //>>includeEnd('debug'); const longitude = cartographic.longitude; const latitude = cartographic.latitude; const cosLatitude = Math.cos(latitude); const x = cosLatitude * Math.cos(longitude); const y = cosLatitude * Math.sin(longitude); const z = Math.sin(latitude); if (!defaultValue.defined(result)) { result = new Cartesian3(); } result.x = x; result.y = y; result.z = z; return Cartesian3.normalize(result, result); }; /** * Computes the normal of the plane tangent to the surface of the ellipsoid at the provided position. * * @param {Cartesian3} cartesian The Cartesian position for which to to determine the surface normal. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if none was provided, or undefined if a normal cannot be found. */ Ellipsoid.prototype.geodeticSurfaceNormal = function (cartesian, result) { if ( Cartesian3.equalsEpsilon(cartesian, Cartesian3.ZERO, Math$1.CesiumMath.EPSILON14) ) { return undefined; } if (!defaultValue.defined(result)) { result = new Cartesian3(); } result = Cartesian3.multiplyComponents( cartesian, this._oneOverRadiiSquared, result ); return Cartesian3.normalize(result, result); }; const cartographicToCartesianNormal = new Cartesian3(); const cartographicToCartesianK = new Cartesian3(); /** * Converts the provided cartographic to Cartesian representation. * * @param {Cartographic} cartographic The cartographic position. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if none was provided. * * @example * //Create a Cartographic and determine it's Cartesian representation on a WGS84 ellipsoid. * const position = new Cesium.Cartographic(Cesium.Math.toRadians(21), Cesium.Math.toRadians(78), 5000); * const cartesianPosition = Cesium.Ellipsoid.WGS84.cartographicToCartesian(position); */ Ellipsoid.prototype.cartographicToCartesian = function (cartographic, result) { //`cartographic is required` is thrown from geodeticSurfaceNormalCartographic. const n = cartographicToCartesianNormal; const k = cartographicToCartesianK; this.geodeticSurfaceNormalCartographic(cartographic, n); Cartesian3.multiplyComponents(this._radiiSquared, n, k); const gamma = Math.sqrt(Cartesian3.dot(n, k)); Cartesian3.divideByScalar(k, gamma, k); Cartesian3.multiplyByScalar(n, cartographic.height, n); if (!defaultValue.defined(result)) { result = new Cartesian3(); } return Cartesian3.add(k, n, result); }; /** * Converts the provided array of cartographics to an array of Cartesians. * * @param {Cartographic[]} cartographics An array of cartographic positions. * @param {Cartesian3[]} [result] The object onto which to store the result. * @returns {Cartesian3[]} The modified result parameter or a new Array instance if none was provided. * * @example * //Convert an array of Cartographics and determine their Cartesian representation on a WGS84 ellipsoid. * const positions = [new Cesium.Cartographic(Cesium.Math.toRadians(21), Cesium.Math.toRadians(78), 0), * new Cesium.Cartographic(Cesium.Math.toRadians(21.321), Cesium.Math.toRadians(78.123), 100), * new Cesium.Cartographic(Cesium.Math.toRadians(21.645), Cesium.Math.toRadians(78.456), 250)]; * const cartesianPositions = Cesium.Ellipsoid.WGS84.cartographicArrayToCartesianArray(positions); */ Ellipsoid.prototype.cartographicArrayToCartesianArray = function ( cartographics, result ) { //>>includeStart('debug', pragmas.debug); Check.Check.defined("cartographics", cartographics); //>>includeEnd('debug') const length = cartographics.length; if (!defaultValue.defined(result)) { result = new Array(length); } else { result.length = length; } for (let i = 0; i < length; i++) { result[i] = this.cartographicToCartesian(cartographics[i], result[i]); } return result; }; const cartesianToCartographicN = new Cartesian3(); const cartesianToCartographicP = new Cartesian3(); const cartesianToCartographicH = new Cartesian3(); /** * Converts the provided cartesian to cartographic representation. * The cartesian is undefined at the center of the ellipsoid. * * @param {Cartesian3} cartesian The Cartesian position to convert to cartographic representation. * @param {Cartographic} [result] The object onto which to store the result. * @returns {Cartographic} The modified result parameter, new Cartographic instance if none was provided, or undefined if the cartesian is at the center of the ellipsoid. * * @example * //Create a Cartesian and determine it's Cartographic representation on a WGS84 ellipsoid. * const position = new Cesium.Cartesian3(17832.12, 83234.52, 952313.73); * const cartographicPosition = Cesium.Ellipsoid.WGS84.cartesianToCartographic(position); */ Ellipsoid.prototype.cartesianToCartographic = function (cartesian, result) { //`cartesian is required.` is thrown from scaleToGeodeticSurface const p = this.scaleToGeodeticSurface(cartesian, cartesianToCartographicP); if (!defaultValue.defined(p)) { return undefined; } const n = this.geodeticSurfaceNormal(p, cartesianToCartographicN); const h = Cartesian3.subtract(cartesian, p, cartesianToCartographicH); const longitude = Math.atan2(n.y, n.x); const latitude = Math.asin(n.z); const height = Math$1.CesiumMath.sign(Cartesian3.dot(h, cartesian)) * Cartesian3.magnitude(h); if (!defaultValue.defined(result)) { return new Cartographic(longitude, latitude, height); } result.longitude = longitude; result.latitude = latitude; result.height = height; return result; }; /** * Converts the provided array of cartesians to an array of cartographics. * * @param {Cartesian3[]} cartesians An array of Cartesian positions. * @param {Cartographic[]} [result] The object onto which to store the result. * @returns {Cartographic[]} The modified result parameter or a new Array instance if none was provided. * * @example * //Create an array of Cartesians and determine their Cartographic representation on a WGS84 ellipsoid. * const positions = [new Cesium.Cartesian3(17832.12, 83234.52, 952313.73), * new Cesium.Cartesian3(17832.13, 83234.53, 952313.73), * new Cesium.Cartesian3(17832.14, 83234.54, 952313.73)] * const cartographicPositions = Cesium.Ellipsoid.WGS84.cartesianArrayToCartographicArray(positions); */ Ellipsoid.prototype.cartesianArrayToCartographicArray = function ( cartesians, result ) { //>>includeStart('debug', pragmas.debug); Check.Check.defined("cartesians", cartesians); //>>includeEnd('debug'); const length = cartesians.length; if (!defaultValue.defined(result)) { result = new Array(length); } else { result.length = length; } for (let i = 0; i < length; ++i) { result[i] = this.cartesianToCartographic(cartesians[i], result[i]); } return result; }; /** * Scales the provided Cartesian position along the geodetic surface normal * so that it is on the surface of this ellipsoid. If the position is * at the center of the ellipsoid, this function returns undefined. * * @param {Cartesian3} cartesian The Cartesian position to scale. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter, a new Cartesian3 instance if none was provided, or undefined if the position is at the center. */ Ellipsoid.prototype.scaleToGeodeticSurface = function (cartesian, result) { return scaleToGeodeticSurface( cartesian, this._oneOverRadii, this._oneOverRadiiSquared, this._centerToleranceSquared, result ); }; /** * Scales the provided Cartesian position along the geocentric surface normal * so that it is on the surface of this ellipsoid. * * @param {Cartesian3} cartesian The Cartesian position to scale. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if none was provided. */ Ellipsoid.prototype.scaleToGeocentricSurface = function (cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("cartesian", cartesian); //>>includeEnd('debug'); if (!defaultValue.defined(result)) { result = new Cartesian3(); } const positionX = cartesian.x; const positionY = cartesian.y; const positionZ = cartesian.z; const oneOverRadiiSquared = this._oneOverRadiiSquared; const beta = 1.0 / Math.sqrt( positionX * positionX * oneOverRadiiSquared.x + positionY * positionY * oneOverRadiiSquared.y + positionZ * positionZ * oneOverRadiiSquared.z ); return Cartesian3.multiplyByScalar(cartesian, beta, result); }; /** * Transforms a Cartesian X, Y, Z position to the ellipsoid-scaled space by multiplying * its components by the result of {@link Ellipsoid#oneOverRadii}. * * @param {Cartesian3} position The position to transform. * @param {Cartesian3} [result] The position to which to copy the result, or undefined to create and * return a new instance. * @returns {Cartesian3} The position expressed in the scaled space. The returned instance is the * one passed as the result parameter if it is not undefined, or a new instance of it is. */ Ellipsoid.prototype.transformPositionToScaledSpace = function ( position, result ) { if (!defaultValue.defined(result)) { result = new Cartesian3(); } return Cartesian3.multiplyComponents(position, this._oneOverRadii, result); }; /** * Transforms a Cartesian X, Y, Z position from the ellipsoid-scaled space by multiplying * its components by the result of {@link Ellipsoid#radii}. * * @param {Cartesian3} position The position to transform. * @param {Cartesian3} [result] The position to which to copy the result, or undefined to create and * return a new instance. * @returns {Cartesian3} The position expressed in the unscaled space. The returned instance is the * one passed as the result parameter if it is not undefined, or a new instance of it is. */ Ellipsoid.prototype.transformPositionFromScaledSpace = function ( position, result ) { if (!defaultValue.defined(result)) { result = new Cartesian3(); } return Cartesian3.multiplyComponents(position, this._radii, result); }; /** * Compares this Ellipsoid against the provided Ellipsoid componentwise and returns * true if they are equal, false otherwise. * * @param {Ellipsoid} [right] The other Ellipsoid. * @returns {Boolean} true if they are equal, false otherwise. */ Ellipsoid.prototype.equals = function (right) { return ( this === right || (defaultValue.defined(right) && Cartesian3.equals(this._radii, right._radii)) ); }; /** * Creates a string representing this Ellipsoid in the format '(radii.x, radii.y, radii.z)'. * * @returns {String} A string representing this ellipsoid in the format '(radii.x, radii.y, radii.z)'. */ Ellipsoid.prototype.toString = function () { return this._radii.toString(); }; /** * Computes a point which is the intersection of the surface normal with the z-axis. * * @param {Cartesian3} position the position. must be on the surface of the ellipsoid. * @param {Number} [buffer = 0.0] A buffer to subtract from the ellipsoid size when checking if the point is inside the ellipsoid. * In earth case, with common earth datums, there is no need for this buffer since the intersection point is always (relatively) very close to the center. * In WGS84 datum, intersection point is at max z = +-42841.31151331382 (0.673% of z-axis). * Intersection point could be outside the ellipsoid if the ratio of MajorAxis / AxisOfRotation is bigger than the square root of 2 * @param {Cartesian3} [result] The cartesian to which to copy the result, or undefined to create and * return a new instance. * @returns {Cartesian3 | undefined} the intersection point if it's inside the ellipsoid, undefined otherwise * * @exception {DeveloperError} position is required. * @exception {DeveloperError} Ellipsoid must be an ellipsoid of revolution (radii.x == radii.y). * @exception {DeveloperError} Ellipsoid.radii.z must be greater than 0. */ Ellipsoid.prototype.getSurfaceNormalIntersectionWithZAxis = function ( position, buffer, result ) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("position", position); if ( !Math$1.CesiumMath.equalsEpsilon( this._radii.x, this._radii.y, Math$1.CesiumMath.EPSILON15 ) ) { throw new Check.DeveloperError( "Ellipsoid must be an ellipsoid of revolution (radii.x == radii.y)" ); } Check.Check.typeOf.number.greaterThan("Ellipsoid.radii.z", this._radii.z, 0); //>>includeEnd('debug'); buffer = defaultValue.defaultValue(buffer, 0.0); const squaredXOverSquaredZ = this._squaredXOverSquaredZ; if (!defaultValue.defined(result)) { result = new Cartesian3(); } result.x = 0.0; result.y = 0.0; result.z = position.z * (1 - squaredXOverSquaredZ); if (Math.abs(result.z) >= this._radii.z - buffer) { return undefined; } return result; }; const abscissas = [ 0.14887433898163, 0.43339539412925, 0.67940956829902, 0.86506336668898, 0.97390652851717, 0.0, ]; const weights = [ 0.29552422471475, 0.26926671930999, 0.21908636251598, 0.14945134915058, 0.066671344308684, 0.0, ]; /** * Compute the 10th order Gauss-Legendre Quadrature of the given definite integral. * * @param {Number} a The lower bound for the integration. * @param {Number} b The upper bound for the integration. * @param {Ellipsoid~RealValuedScalarFunction} func The function to integrate. * @returns {Number} The value of the integral of the given function over the given domain. * * @private */ function gaussLegendreQuadrature(a, b, func) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number("a", a); Check.Check.typeOf.number("b", b); Check.Check.typeOf.func("func", func); //>>includeEnd('debug'); // The range is half of the normal range since the five weights add to one (ten weights add to two). // The values of the abscissas are multiplied by two to account for this. const xMean = 0.5 * (b + a); const xRange = 0.5 * (b - a); let sum = 0.0; for (let i = 0; i < 5; i++) { const dx = xRange * abscissas[i]; sum += weights[i] * (func(xMean + dx) + func(xMean - dx)); } // Scale the sum to the range of x. sum *= xRange; return sum; } /** * A real valued scalar function. * @callback Ellipsoid~RealValuedScalarFunction * * @param {Number} x The value used to evaluate the function. * @returns {Number} The value of the function at x. * * @private */ /** * Computes an approximation of the surface area of a rectangle on the surface of an ellipsoid using * Gauss-Legendre 10th order quadrature. * * @param {Rectangle} rectangle The rectangle used for computing the surface area. * @returns {Number} The approximate area of the rectangle on the surface of this ellipsoid. */ Ellipsoid.prototype.surfaceArea = function (rectangle) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("rectangle", rectangle); //>>includeEnd('debug'); const minLongitude = rectangle.west; let maxLongitude = rectangle.east; const minLatitude = rectangle.south; const maxLatitude = rectangle.north; while (maxLongitude < minLongitude) { maxLongitude += Math$1.CesiumMath.TWO_PI; } const radiiSquared = this._radiiSquared; const a2 = radiiSquared.x; const b2 = radiiSquared.y; const c2 = radiiSquared.z; const a2b2 = a2 * b2; return gaussLegendreQuadrature(minLatitude, maxLatitude, function (lat) { // phi represents the angle measured from the north pole // sin(phi) = sin(pi / 2 - lat) = cos(lat), cos(phi) is similar const sinPhi = Math.cos(lat); const cosPhi = Math.sin(lat); return ( Math.cos(lat) * gaussLegendreQuadrature(minLongitude, maxLongitude, function (lon) { const cosTheta = Math.cos(lon); const sinTheta = Math.sin(lon); return Math.sqrt( a2b2 * cosPhi * cosPhi + c2 * (b2 * cosTheta * cosTheta + a2 * sinTheta * sinTheta) * sinPhi * sinPhi ); }) ); }); }; /** * A 3x3 matrix, indexable as a column-major order array. * Constructor parameters are in row-major order for code readability. * @alias Matrix3 * @constructor * @implements {ArrayLike} * * @param {Number} [column0Row0=0.0] The value for column 0, row 0. * @param {Number} [column1Row0=0.0] The value for column 1, row 0. * @param {Number} [column2Row0=0.0] The value for column 2, row 0. * @param {Number} [column0Row1=0.0] The value for column 0, row 1. * @param {Number} [column1Row1=0.0] The value for column 1, row 1. * @param {Number} [column2Row1=0.0] The value for column 2, row 1. * @param {Number} [column0Row2=0.0] The value for column 0, row 2. * @param {Number} [column1Row2=0.0] The value for column 1, row 2. * @param {Number} [column2Row2=0.0] The value for column 2, row 2. * * @see Matrix3.fromArray * @see Matrix3.fromColumnMajorArray * @see Matrix3.fromRowMajorArray * @see Matrix3.fromQuaternion * @see Matrix3.fromHeadingPitchRoll * @see Matrix3.fromScale * @see Matrix3.fromUniformScale * @see Matrix3.fromCrossProduct * @see Matrix3.fromRotationX * @see Matrix3.fromRotationY * @see Matrix3.fromRotationZ * @see Matrix2 * @see Matrix4 */ function Matrix3( column0Row0, column1Row0, column2Row0, column0Row1, column1Row1, column2Row1, column0Row2, column1Row2, column2Row2 ) { this[0] = defaultValue.defaultValue(column0Row0, 0.0); this[1] = defaultValue.defaultValue(column0Row1, 0.0); this[2] = defaultValue.defaultValue(column0Row2, 0.0); this[3] = defaultValue.defaultValue(column1Row0, 0.0); this[4] = defaultValue.defaultValue(column1Row1, 0.0); this[5] = defaultValue.defaultValue(column1Row2, 0.0); this[6] = defaultValue.defaultValue(column2Row0, 0.0); this[7] = defaultValue.defaultValue(column2Row1, 0.0); this[8] = defaultValue.defaultValue(column2Row2, 0.0); } /** * The number of elements used to pack the object into an array. * @type {Number} */ Matrix3.packedLength = 9; /** * Stores the provided instance into the provided array. * * @param {Matrix3} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ Matrix3.pack = function (value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("value", value); Check.Check.defined("array", array); //>>includeEnd('debug'); startingIndex = defaultValue.defaultValue(startingIndex, 0); array[startingIndex++] = value[0]; array[startingIndex++] = value[1]; array[startingIndex++] = value[2]; array[startingIndex++] = value[3]; array[startingIndex++] = value[4]; array[startingIndex++] = value[5]; array[startingIndex++] = value[6]; array[startingIndex++] = value[7]; array[startingIndex++] = value[8]; return array; }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {Matrix3} [result] The object into which to store the result. * @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided. */ Matrix3.unpack = function (array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined("array", array); //>>includeEnd('debug'); startingIndex = defaultValue.defaultValue(startingIndex, 0); if (!defaultValue.defined(result)) { result = new Matrix3(); } result[0] = array[startingIndex++]; result[1] = array[startingIndex++]; result[2] = array[startingIndex++]; result[3] = array[startingIndex++]; result[4] = array[startingIndex++]; result[5] = array[startingIndex++]; result[6] = array[startingIndex++]; result[7] = array[startingIndex++]; result[8] = array[startingIndex++]; return result; }; /** * Flattens an array of Matrix3s into an array of components. The components * are stored in column-major order. * * @param {Matrix3[]} array The array of matrices to pack. * @param {Number[]} [result] The array onto which to store the result. If this is a typed array, it must have array.length * 9 components, else a {@link DeveloperError} will be thrown. If it is a regular array, it will be resized to have (array.length * 9) elements. * @returns {Number[]} The packed array. */ Matrix3.packArray = function (array, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined("array", array); //>>includeEnd('debug'); const length = array.length; const resultLength = length * 9; if (!defaultValue.defined(result)) { result = new Array(resultLength); } else if (!Array.isArray(result) && result.length !== resultLength) { //>>includeStart('debug', pragmas.debug); throw new Check.DeveloperError( "If result is a typed array, it must have exactly array.length * 9 elements" ); //>>includeEnd('debug'); } else if (result.length !== resultLength) { result.length = resultLength; } for (let i = 0; i < length; ++i) { Matrix3.pack(array[i], result, i * 9); } return result; }; /** * Unpacks an array of column-major matrix components into an array of Matrix3s. * * @param {Number[]} array The array of components to unpack. * @param {Matrix3[]} [result] The array onto which to store the result. * @returns {Matrix3[]} The unpacked array. */ Matrix3.unpackArray = function (array, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined("array", array); Check.Check.typeOf.number.greaterThanOrEquals("array.length", array.length, 9); if (array.length % 9 !== 0) { throw new Check.DeveloperError("array length must be a multiple of 9."); } //>>includeEnd('debug'); const length = array.length; if (!defaultValue.defined(result)) { result = new Array(length / 9); } else { result.length = length / 9; } for (let i = 0; i < length; i += 9) { const index = i / 9; result[index] = Matrix3.unpack(array, i, result[index]); } return result; }; /** * Duplicates a Matrix3 instance. * * @param {Matrix3} matrix The matrix to duplicate. * @param {Matrix3} [result] The object onto which to store the result. * @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided. (Returns undefined if matrix is undefined) */ Matrix3.clone = function (matrix, result) { if (!defaultValue.defined(matrix)) { return undefined; } if (!defaultValue.defined(result)) { return new Matrix3( matrix[0], matrix[3], matrix[6], matrix[1], matrix[4], matrix[7], matrix[2], matrix[5], matrix[8] ); } result[0] = matrix[0]; result[1] = matrix[1]; result[2] = matrix[2]; result[3] = matrix[3]; result[4] = matrix[4]; result[5] = matrix[5]; result[6] = matrix[6]; result[7] = matrix[7]; result[8] = matrix[8]; return result; }; /** * Creates a Matrix3 from 9 consecutive elements in an array. * * @function * @param {Number[]} array The array whose 9 consecutive elements correspond to the positions of the matrix. Assumes column-major order. * @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to first column first row position in the matrix. * @param {Matrix3} [result] The object onto which to store the result. * @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided. * * @example * // Create the Matrix3: * // [1.0, 2.0, 3.0] * // [1.0, 2.0, 3.0] * // [1.0, 2.0, 3.0] * * const v = [1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0]; * const m = Cesium.Matrix3.fromArray(v); * * // Create same Matrix3 with using an offset into an array * const v2 = [0.0, 0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0]; * const m2 = Cesium.Matrix3.fromArray(v2, 2); */ Matrix3.fromArray = Matrix3.unpack; /** * Creates a Matrix3 instance from a column-major order array. * * @param {Number[]} values The column-major order array. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. */ Matrix3.fromColumnMajorArray = function (values, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined("values", values); //>>includeEnd('debug'); return Matrix3.clone(values, result); }; /** * Creates a Matrix3 instance from a row-major order array. * The resulting matrix will be in column-major order. * * @param {Number[]} values The row-major order array. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. */ Matrix3.fromRowMajorArray = function (values, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined("values", values); //>>includeEnd('debug'); if (!defaultValue.defined(result)) { return new Matrix3( values[0], values[1], values[2], values[3], values[4], values[5], values[6], values[7], values[8] ); } result[0] = values[0]; result[1] = values[3]; result[2] = values[6]; result[3] = values[1]; result[4] = values[4]; result[5] = values[7]; result[6] = values[2]; result[7] = values[5]; result[8] = values[8]; return result; }; /** * Computes a 3x3 rotation matrix from the provided quaternion. * * @param {Quaternion} quaternion the quaternion to use. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The 3x3 rotation matrix from this quaternion. */ Matrix3.fromQuaternion = function (quaternion, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("quaternion", quaternion); //>>includeEnd('debug'); const x2 = quaternion.x * quaternion.x; const xy = quaternion.x * quaternion.y; const xz = quaternion.x * quaternion.z; const xw = quaternion.x * quaternion.w; const y2 = quaternion.y * quaternion.y; const yz = quaternion.y * quaternion.z; const yw = quaternion.y * quaternion.w; const z2 = quaternion.z * quaternion.z; const zw = quaternion.z * quaternion.w; const w2 = quaternion.w * quaternion.w; const m00 = x2 - y2 - z2 + w2; const m01 = 2.0 * (xy - zw); const m02 = 2.0 * (xz + yw); const m10 = 2.0 * (xy + zw); const m11 = -x2 + y2 - z2 + w2; const m12 = 2.0 * (yz - xw); const m20 = 2.0 * (xz - yw); const m21 = 2.0 * (yz + xw); const m22 = -x2 - y2 + z2 + w2; if (!defaultValue.defined(result)) { return new Matrix3(m00, m01, m02, m10, m11, m12, m20, m21, m22); } result[0] = m00; result[1] = m10; result[2] = m20; result[3] = m01; result[4] = m11; result[5] = m21; result[6] = m02; result[7] = m12; result[8] = m22; return result; }; /** * Computes a 3x3 rotation matrix from the provided headingPitchRoll. (see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles ) * * @param {HeadingPitchRoll} headingPitchRoll the headingPitchRoll to use. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The 3x3 rotation matrix from this headingPitchRoll. */ Matrix3.fromHeadingPitchRoll = function (headingPitchRoll, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("headingPitchRoll", headingPitchRoll); //>>includeEnd('debug'); const cosTheta = Math.cos(-headingPitchRoll.pitch); const cosPsi = Math.cos(-headingPitchRoll.heading); const cosPhi = Math.cos(headingPitchRoll.roll); const sinTheta = Math.sin(-headingPitchRoll.pitch); const sinPsi = Math.sin(-headingPitchRoll.heading); const sinPhi = Math.sin(headingPitchRoll.roll); const m00 = cosTheta * cosPsi; const m01 = -cosPhi * sinPsi + sinPhi * sinTheta * cosPsi; const m02 = sinPhi * sinPsi + cosPhi * sinTheta * cosPsi; const m10 = cosTheta * sinPsi; const m11 = cosPhi * cosPsi + sinPhi * sinTheta * sinPsi; const m12 = -sinPhi * cosPsi + cosPhi * sinTheta * sinPsi; const m20 = -sinTheta; const m21 = sinPhi * cosTheta; const m22 = cosPhi * cosTheta; if (!defaultValue.defined(result)) { return new Matrix3(m00, m01, m02, m10, m11, m12, m20, m21, m22); } result[0] = m00; result[1] = m10; result[2] = m20; result[3] = m01; result[4] = m11; result[5] = m21; result[6] = m02; result[7] = m12; result[8] = m22; return result; }; /** * Computes a Matrix3 instance representing a non-uniform scale. * * @param {Cartesian3} scale The x, y, and z scale factors. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. * * @example * // Creates * // [7.0, 0.0, 0.0] * // [0.0, 8.0, 0.0] * // [0.0, 0.0, 9.0] * const m = Cesium.Matrix3.fromScale(new Cesium.Cartesian3(7.0, 8.0, 9.0)); */ Matrix3.fromScale = function (scale, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("scale", scale); //>>includeEnd('debug'); if (!defaultValue.defined(result)) { return new Matrix3(scale.x, 0.0, 0.0, 0.0, scale.y, 0.0, 0.0, 0.0, scale.z); } result[0] = scale.x; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = scale.y; result[5] = 0.0; result[6] = 0.0; result[7] = 0.0; result[8] = scale.z; return result; }; /** * Computes a Matrix3 instance representing a uniform scale. * * @param {Number} scale The uniform scale factor. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. * * @example * // Creates * // [2.0, 0.0, 0.0] * // [0.0, 2.0, 0.0] * // [0.0, 0.0, 2.0] * const m = Cesium.Matrix3.fromUniformScale(2.0); */ Matrix3.fromUniformScale = function (scale, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number("scale", scale); //>>includeEnd('debug'); if (!defaultValue.defined(result)) { return new Matrix3(scale, 0.0, 0.0, 0.0, scale, 0.0, 0.0, 0.0, scale); } result[0] = scale; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = scale; result[5] = 0.0; result[6] = 0.0; result[7] = 0.0; result[8] = scale; return result; }; /** * Computes a Matrix3 instance representing the cross product equivalent matrix of a Cartesian3 vector. * * @param {Cartesian3} vector the vector on the left hand side of the cross product operation. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. * * @example * // Creates * // [0.0, -9.0, 8.0] * // [9.0, 0.0, -7.0] * // [-8.0, 7.0, 0.0] * const m = Cesium.Matrix3.fromCrossProduct(new Cesium.Cartesian3(7.0, 8.0, 9.0)); */ Matrix3.fromCrossProduct = function (vector, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("vector", vector); //>>includeEnd('debug'); if (!defaultValue.defined(result)) { return new Matrix3( 0.0, -vector.z, vector.y, vector.z, 0.0, -vector.x, -vector.y, vector.x, 0.0 ); } result[0] = 0.0; result[1] = vector.z; result[2] = -vector.y; result[3] = -vector.z; result[4] = 0.0; result[5] = vector.x; result[6] = vector.y; result[7] = -vector.x; result[8] = 0.0; return result; }; /** * Creates a rotation matrix around the x-axis. * * @param {Number} angle The angle, in radians, of the rotation. Positive angles are counterclockwise. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. * * @example * // Rotate a point 45 degrees counterclockwise around the x-axis. * const p = new Cesium.Cartesian3(5, 6, 7); * const m = Cesium.Matrix3.fromRotationX(Cesium.Math.toRadians(45.0)); * const rotated = Cesium.Matrix3.multiplyByVector(m, p, new Cesium.Cartesian3()); */ Matrix3.fromRotationX = function (angle, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number("angle", angle); //>>includeEnd('debug'); const cosAngle = Math.cos(angle); const sinAngle = Math.sin(angle); if (!defaultValue.defined(result)) { return new Matrix3( 1.0, 0.0, 0.0, 0.0, cosAngle, -sinAngle, 0.0, sinAngle, cosAngle ); } result[0] = 1.0; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = cosAngle; result[5] = sinAngle; result[6] = 0.0; result[7] = -sinAngle; result[8] = cosAngle; return result; }; /** * Creates a rotation matrix around the y-axis. * * @param {Number} angle The angle, in radians, of the rotation. Positive angles are counterclockwise. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. * * @example * // Rotate a point 45 degrees counterclockwise around the y-axis. * const p = new Cesium.Cartesian3(5, 6, 7); * const m = Cesium.Matrix3.fromRotationY(Cesium.Math.toRadians(45.0)); * const rotated = Cesium.Matrix3.multiplyByVector(m, p, new Cesium.Cartesian3()); */ Matrix3.fromRotationY = function (angle, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number("angle", angle); //>>includeEnd('debug'); const cosAngle = Math.cos(angle); const sinAngle = Math.sin(angle); if (!defaultValue.defined(result)) { return new Matrix3( cosAngle, 0.0, sinAngle, 0.0, 1.0, 0.0, -sinAngle, 0.0, cosAngle ); } result[0] = cosAngle; result[1] = 0.0; result[2] = -sinAngle; result[3] = 0.0; result[4] = 1.0; result[5] = 0.0; result[6] = sinAngle; result[7] = 0.0; result[8] = cosAngle; return result; }; /** * Creates a rotation matrix around the z-axis. * * @param {Number} angle The angle, in radians, of the rotation. Positive angles are counterclockwise. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. * * @example * // Rotate a point 45 degrees counterclockwise around the z-axis. * const p = new Cesium.Cartesian3(5, 6, 7); * const m = Cesium.Matrix3.fromRotationZ(Cesium.Math.toRadians(45.0)); * const rotated = Cesium.Matrix3.multiplyByVector(m, p, new Cesium.Cartesian3()); */ Matrix3.fromRotationZ = function (angle, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number("angle", angle); //>>includeEnd('debug'); const cosAngle = Math.cos(angle); const sinAngle = Math.sin(angle); if (!defaultValue.defined(result)) { return new Matrix3( cosAngle, -sinAngle, 0.0, sinAngle, cosAngle, 0.0, 0.0, 0.0, 1.0 ); } result[0] = cosAngle; result[1] = sinAngle; result[2] = 0.0; result[3] = -sinAngle; result[4] = cosAngle; result[5] = 0.0; result[6] = 0.0; result[7] = 0.0; result[8] = 1.0; return result; }; /** * Creates an Array from the provided Matrix3 instance. * The array will be in column-major order. * * @param {Matrix3} matrix The matrix to use.. * @param {Number[]} [result] The Array onto which to store the result. * @returns {Number[]} The modified Array parameter or a new Array instance if one was not provided. */ Matrix3.toArray = function (matrix, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("matrix", matrix); //>>includeEnd('debug'); if (!defaultValue.defined(result)) { return [ matrix[0], matrix[1], matrix[2], matrix[3], matrix[4], matrix[5], matrix[6], matrix[7], matrix[8], ]; } result[0] = matrix[0]; result[1] = matrix[1]; result[2] = matrix[2]; result[3] = matrix[3]; result[4] = matrix[4]; result[5] = matrix[5]; result[6] = matrix[6]; result[7] = matrix[7]; result[8] = matrix[8]; return result; }; /** * Computes the array index of the element at the provided row and column. * * @param {Number} column The zero-based index of the column. * @param {Number} row The zero-based index of the row. * @returns {Number} The index of the element at the provided row and column. * * @exception {DeveloperError} row must be 0, 1, or 2. * @exception {DeveloperError} column must be 0, 1, or 2. * * @example * const myMatrix = new Cesium.Matrix3(); * const column1Row0Index = Cesium.Matrix3.getElementIndex(1, 0); * const column1Row0 = myMatrix[column1Row0Index] * myMatrix[column1Row0Index] = 10.0; */ Matrix3.getElementIndex = function (column, row) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number.greaterThanOrEquals("row", row, 0); Check.Check.typeOf.number.lessThanOrEquals("row", row, 2); Check.Check.typeOf.number.greaterThanOrEquals("column", column, 0); Check.Check.typeOf.number.lessThanOrEquals("column", column, 2); //>>includeEnd('debug'); return column * 3 + row; }; /** * Retrieves a copy of the matrix column at the provided index as a Cartesian3 instance. * * @param {Matrix3} matrix The matrix to use. * @param {Number} index The zero-based index of the column to retrieve. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. * * @exception {DeveloperError} index must be 0, 1, or 2. */ Matrix3.getColumn = function (matrix, index, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("matrix", matrix); Check.Check.typeOf.number.greaterThanOrEquals("index", index, 0); Check.Check.typeOf.number.lessThanOrEquals("index", index, 2); Check.Check.typeOf.object("result", result); //>>includeEnd('debug'); const startIndex = index * 3; const x = matrix[startIndex]; const y = matrix[startIndex + 1]; const z = matrix[startIndex + 2]; result.x = x; result.y = y; result.z = z; return result; }; /** * Computes a new matrix that replaces the specified column in the provided matrix with the provided Cartesian3 instance. * * @param {Matrix3} matrix The matrix to use. * @param {Number} index The zero-based index of the column to set. * @param {Cartesian3} cartesian The Cartesian whose values will be assigned to the specified column. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @exception {DeveloperError} index must be 0, 1, or 2. */ Matrix3.setColumn = function (matrix, index, cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("matrix", matrix); Check.Check.typeOf.number.greaterThanOrEquals("index", index, 0); Check.Check.typeOf.number.lessThanOrEquals("index", index, 2); Check.Check.typeOf.object("cartesian", cartesian); Check.Check.typeOf.object("result", result); //>>includeEnd('debug'); result = Matrix3.clone(matrix, result); const startIndex = index * 3; result[startIndex] = cartesian.x; result[startIndex + 1] = cartesian.y; result[startIndex + 2] = cartesian.z; return result; }; /** * Retrieves a copy of the matrix row at the provided index as a Cartesian3 instance. * * @param {Matrix3} matrix The matrix to use. * @param {Number} index The zero-based index of the row to retrieve. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. * * @exception {DeveloperError} index must be 0, 1, or 2. */ Matrix3.getRow = function (matrix, index, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("matrix", matrix); Check.Check.typeOf.number.greaterThanOrEquals("index", index, 0); Check.Check.typeOf.number.lessThanOrEquals("index", index, 2); Check.Check.typeOf.object("result", result); //>>includeEnd('debug'); const x = matrix[index]; const y = matrix[index + 3]; const z = matrix[index + 6]; result.x = x; result.y = y; result.z = z; return result; }; /** * Computes a new matrix that replaces the specified row in the provided matrix with the provided Cartesian3 instance. * * @param {Matrix3} matrix The matrix to use. * @param {Number} index The zero-based index of the row to set. * @param {Cartesian3} cartesian The Cartesian whose values will be assigned to the specified row. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @exception {DeveloperError} index must be 0, 1, or 2. */ Matrix3.setRow = function (matrix, index, cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("matrix", matrix); Check.Check.typeOf.number.greaterThanOrEquals("index", index, 0); Check.Check.typeOf.number.lessThanOrEquals("index", index, 2); Check.Check.typeOf.object("cartesian", cartesian); Check.Check.typeOf.object("result", result); //>>includeEnd('debug'); result = Matrix3.clone(matrix, result); result[index] = cartesian.x; result[index + 3] = cartesian.y; result[index + 6] = cartesian.z; return result; }; const scaleScratch1 = new Cartesian3(); /** * Computes a new matrix that replaces the scale with the provided scale. * This assumes the matrix is an affine transformation. * * @param {Matrix3} matrix The matrix to use. * @param {Cartesian3} scale The scale that replaces the scale of the provided matrix. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @see Matrix3.setUniformScale * @see Matrix3.fromScale * @see Matrix3.fromUniformScale * @see Matrix3.multiplyByScale * @see Matrix3.multiplyByUniformScale * @see Matrix3.getScale */ Matrix3.setScale = function (matrix, scale, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("matrix", matrix); Check.Check.typeOf.object("scale", scale); Check.Check.typeOf.object("result", result); //>>includeEnd('debug'); const existingScale = Matrix3.getScale(matrix, scaleScratch1); const scaleRatioX = scale.x / existingScale.x; const scaleRatioY = scale.y / existingScale.y; const scaleRatioZ = scale.z / existingScale.z; result[0] = matrix[0] * scaleRatioX; result[1] = matrix[1] * scaleRatioX; result[2] = matrix[2] * scaleRatioX; result[3] = matrix[3] * scaleRatioY; result[4] = matrix[4] * scaleRatioY; result[5] = matrix[5] * scaleRatioY; result[6] = matrix[6] * scaleRatioZ; result[7] = matrix[7] * scaleRatioZ; result[8] = matrix[8] * scaleRatioZ; return result; }; const scaleScratch2 = new Cartesian3(); /** * Computes a new matrix that replaces the scale with the provided uniform scale. * This assumes the matrix is an affine transformation. * * @param {Matrix3} matrix The matrix to use. * @param {Number} scale The uniform scale that replaces the scale of the provided matrix. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @see Matrix3.setScale * @see Matrix3.fromScale * @see Matrix3.fromUniformScale * @see Matrix3.multiplyByScale * @see Matrix3.multiplyByUniformScale * @see Matrix3.getScale */ Matrix3.setUniformScale = function (matrix, scale, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("matrix", matrix); Check.Check.typeOf.number("scale", scale); Check.Check.typeOf.object("result", result); //>>includeEnd('debug'); const existingScale = Matrix3.getScale(matrix, scaleScratch2); const scaleRatioX = scale / existingScale.x; const scaleRatioY = scale / existingScale.y; const scaleRatioZ = scale / existingScale.z; result[0] = matrix[0] * scaleRatioX; result[1] = matrix[1] * scaleRatioX; result[2] = matrix[2] * scaleRatioX; result[3] = matrix[3] * scaleRatioY; result[4] = matrix[4] * scaleRatioY; result[5] = matrix[5] * scaleRatioY; result[6] = matrix[6] * scaleRatioZ; result[7] = matrix[7] * scaleRatioZ; result[8] = matrix[8] * scaleRatioZ; return result; }; const scratchColumn = new Cartesian3(); /** * Extracts the non-uniform scale assuming the matrix is an affine transformation. * * @param {Matrix3} matrix The matrix. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. * * @see Matrix3.multiplyByScale * @see Matrix3.multiplyByUniformScale * @see Matrix3.fromScale * @see Matrix3.fromUniformScale * @see Matrix3.setScale * @see Matrix3.setUniformScale */ Matrix3.getScale = function (matrix, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("matrix", matrix); Check.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = Cartesian3.magnitude( Cartesian3.fromElements(matrix[0], matrix[1], matrix[2], scratchColumn) ); result.y = Cartesian3.magnitude( Cartesian3.fromElements(matrix[3], matrix[4], matrix[5], scratchColumn) ); result.z = Cartesian3.magnitude( Cartesian3.fromElements(matrix[6], matrix[7], matrix[8], scratchColumn) ); return result; }; const scaleScratch3 = new Cartesian3(); /** * Computes the maximum scale assuming the matrix is an affine transformation. * The maximum scale is the maximum length of the column vectors. * * @param {Matrix3} matrix The matrix. * @returns {Number} The maximum scale. */ Matrix3.getMaximumScale = function (matrix) { Matrix3.getScale(matrix, scaleScratch3); return Cartesian3.maximumComponent(scaleScratch3); }; const scaleScratch4 = new Cartesian3(); /** * Sets the rotation assuming the matrix is an affine transformation. * * @param {Matrix3} matrix The matrix. * @param {Matrix3} rotation The rotation matrix. * @returns {Matrix3} The modified result parameter. * * @see Matrix3.getRotation */ Matrix3.setRotation = function (matrix, rotation, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("matrix", matrix); Check.Check.typeOf.object("result", result); //>>includeEnd('debug'); const scale = Matrix3.getScale(matrix, scaleScratch4); result[0] = rotation[0] * scale.x; result[1] = rotation[1] * scale.x; result[2] = rotation[2] * scale.x; result[3] = rotation[3] * scale.y; result[4] = rotation[4] * scale.y; result[5] = rotation[5] * scale.y; result[6] = rotation[6] * scale.z; result[7] = rotation[7] * scale.z; result[8] = rotation[8] * scale.z; return result; }; const scaleScratch5 = new Cartesian3(); /** * Extracts the rotation matrix assuming the matrix is an affine transformation. * * @param {Matrix3} matrix The matrix. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @see Matrix3.setRotation */ Matrix3.getRotation = function (matrix, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("matrix", matrix); Check.Check.typeOf.object("result", result); //>>includeEnd('debug'); const scale = Matrix3.getScale(matrix, scaleScratch5); result[0] = matrix[0] / scale.x; result[1] = matrix[1] / scale.x; result[2] = matrix[2] / scale.x; result[3] = matrix[3] / scale.y; result[4] = matrix[4] / scale.y; result[5] = matrix[5] / scale.y; result[6] = matrix[6] / scale.z; result[7] = matrix[7] / scale.z; result[8] = matrix[8] / scale.z; return result; }; /** * Computes the product of two matrices. * * @param {Matrix3} left The first matrix. * @param {Matrix3} right The second matrix. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.multiply = function (left, right, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("left", left); Check.Check.typeOf.object("right", right); Check.Check.typeOf.object("result", result); //>>includeEnd('debug'); const column0Row0 = left[0] * right[0] + left[3] * right[1] + left[6] * right[2]; const column0Row1 = left[1] * right[0] + left[4] * right[1] + left[7] * right[2]; const column0Row2 = left[2] * right[0] + left[5] * right[1] + left[8] * right[2]; const column1Row0 = left[0] * right[3] + left[3] * right[4] + left[6] * right[5]; const column1Row1 = left[1] * right[3] + left[4] * right[4] + left[7] * right[5]; const column1Row2 = left[2] * right[3] + left[5] * right[4] + left[8] * right[5]; const column2Row0 = left[0] * right[6] + left[3] * right[7] + left[6] * right[8]; const column2Row1 = left[1] * right[6] + left[4] * right[7] + left[7] * right[8]; const column2Row2 = left[2] * right[6] + left[5] * right[7] + left[8] * right[8]; result[0] = column0Row0; result[1] = column0Row1; result[2] = column0Row2; result[3] = column1Row0; result[4] = column1Row1; result[5] = column1Row2; result[6] = column2Row0; result[7] = column2Row1; result[8] = column2Row2; return result; }; /** * Computes the sum of two matrices. * * @param {Matrix3} left The first matrix. * @param {Matrix3} right The second matrix. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.add = function (left, right, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("left", left); Check.Check.typeOf.object("right", right); Check.Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = left[0] + right[0]; result[1] = left[1] + right[1]; result[2] = left[2] + right[2]; result[3] = left[3] + right[3]; result[4] = left[4] + right[4]; result[5] = left[5] + right[5]; result[6] = left[6] + right[6]; result[7] = left[7] + right[7]; result[8] = left[8] + right[8]; return result; }; /** * Computes the difference of two matrices. * * @param {Matrix3} left The first matrix. * @param {Matrix3} right The second matrix. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.subtract = function (left, right, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("left", left); Check.Check.typeOf.object("right", right); Check.Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = left[0] - right[0]; result[1] = left[1] - right[1]; result[2] = left[2] - right[2]; result[3] = left[3] - right[3]; result[4] = left[4] - right[4]; result[5] = left[5] - right[5]; result[6] = left[6] - right[6]; result[7] = left[7] - right[7]; result[8] = left[8] - right[8]; return result; }; /** * Computes the product of a matrix and a column vector. * * @param {Matrix3} matrix The matrix. * @param {Cartesian3} cartesian The column. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Matrix3.multiplyByVector = function (matrix, cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("matrix", matrix); Check.Check.typeOf.object("cartesian", cartesian); Check.Check.typeOf.object("result", result); //>>includeEnd('debug'); const vX = cartesian.x; const vY = cartesian.y; const vZ = cartesian.z; const x = matrix[0] * vX + matrix[3] * vY + matrix[6] * vZ; const y = matrix[1] * vX + matrix[4] * vY + matrix[7] * vZ; const z = matrix[2] * vX + matrix[5] * vY + matrix[8] * vZ; result.x = x; result.y = y; result.z = z; return result; }; /** * Computes the product of a matrix and a scalar. * * @param {Matrix3} matrix The matrix. * @param {Number} scalar The number to multiply by. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.multiplyByScalar = function (matrix, scalar, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("matrix", matrix); Check.Check.typeOf.number("scalar", scalar); Check.Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = matrix[0] * scalar; result[1] = matrix[1] * scalar; result[2] = matrix[2] * scalar; result[3] = matrix[3] * scalar; result[4] = matrix[4] * scalar; result[5] = matrix[5] * scalar; result[6] = matrix[6] * scalar; result[7] = matrix[7] * scalar; result[8] = matrix[8] * scalar; return result; }; /** * Computes the product of a matrix times a (non-uniform) scale, as if the scale were a scale matrix. * * @param {Matrix3} matrix The matrix on the left-hand side. * @param {Number} scale The non-uniform scale on the right-hand side. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * * @example * // Instead of Cesium.Matrix3.multiply(m, Cesium.Matrix3.fromScale(scale), m); * Cesium.Matrix3.multiplyByScale(m, scale, m); * * @see Matrix3.multiplyByUniformScale * @see Matrix3.fromScale * @see Matrix3.fromUniformScale * @see Matrix3.setScale * @see Matrix3.setUniformScale * @see Matrix3.getScale */ Matrix3.multiplyByScale = function (matrix, scale, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("matrix", matrix); Check.Check.typeOf.object("scale", scale); Check.Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = matrix[0] * scale.x; result[1] = matrix[1] * scale.x; result[2] = matrix[2] * scale.x; result[3] = matrix[3] * scale.y; result[4] = matrix[4] * scale.y; result[5] = matrix[5] * scale.y; result[6] = matrix[6] * scale.z; result[7] = matrix[7] * scale.z; result[8] = matrix[8] * scale.z; return result; }; /** * Computes the product of a matrix times a uniform scale, as if the scale were a scale matrix. * * @param {Matrix3} matrix The matrix on the left-hand side. * @param {Number} scale The uniform scale on the right-hand side. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @example * // Instead of Cesium.Matrix3.multiply(m, Cesium.Matrix3.fromUniformScale(scale), m); * Cesium.Matrix3.multiplyByUniformScale(m, scale, m); * * @see Matrix3.multiplyByScale * @see Matrix3.fromScale * @see Matrix3.fromUniformScale * @see Matrix3.setScale * @see Matrix3.setUniformScale * @see Matrix3.getScale */ Matrix3.multiplyByUniformScale = function (matrix, scale, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("matrix", matrix); Check.Check.typeOf.number("scale", scale); Check.Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = matrix[0] * scale; result[1] = matrix[1] * scale; result[2] = matrix[2] * scale; result[3] = matrix[3] * scale; result[4] = matrix[4] * scale; result[5] = matrix[5] * scale; result[6] = matrix[6] * scale; result[7] = matrix[7] * scale; result[8] = matrix[8] * scale; return result; }; /** * Creates a negated copy of the provided matrix. * * @param {Matrix3} matrix The matrix to negate. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.negate = function (matrix, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("matrix", matrix); Check.Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = -matrix[0]; result[1] = -matrix[1]; result[2] = -matrix[2]; result[3] = -matrix[3]; result[4] = -matrix[4]; result[5] = -matrix[5]; result[6] = -matrix[6]; result[7] = -matrix[7]; result[8] = -matrix[8]; return result; }; /** * Computes the transpose of the provided matrix. * * @param {Matrix3} matrix The matrix to transpose. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.transpose = function (matrix, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("matrix", matrix); Check.Check.typeOf.object("result", result); //>>includeEnd('debug'); const column0Row0 = matrix[0]; const column0Row1 = matrix[3]; const column0Row2 = matrix[6]; const column1Row0 = matrix[1]; const column1Row1 = matrix[4]; const column1Row2 = matrix[7]; const column2Row0 = matrix[2]; const column2Row1 = matrix[5]; const column2Row2 = matrix[8]; result[0] = column0Row0; result[1] = column0Row1; result[2] = column0Row2; result[3] = column1Row0; result[4] = column1Row1; result[5] = column1Row2; result[6] = column2Row0; result[7] = column2Row1; result[8] = column2Row2; return result; }; function computeFrobeniusNorm(matrix) { let norm = 0.0; for (let i = 0; i < 9; ++i) { const temp = matrix[i]; norm += temp * temp; } return Math.sqrt(norm); } const rowVal = [1, 0, 0]; const colVal = [2, 2, 1]; function offDiagonalFrobeniusNorm(matrix) { // Computes the "off-diagonal" Frobenius norm. // Assumes matrix is symmetric. let norm = 0.0; for (let i = 0; i < 3; ++i) { const temp = matrix[Matrix3.getElementIndex(colVal[i], rowVal[i])]; norm += 2.0 * temp * temp; } return Math.sqrt(norm); } function shurDecomposition(matrix, result) { // This routine was created based upon Matrix Computations, 3rd ed., by Golub and Van Loan, // section 8.4.2 The 2by2 Symmetric Schur Decomposition. // // The routine takes a matrix, which is assumed to be symmetric, and // finds the largest off-diagonal term, and then creates // a matrix (result) which can be used to help reduce it const tolerance = Math$1.CesiumMath.EPSILON15; let maxDiagonal = 0.0; let rotAxis = 1; // find pivot (rotAxis) based on max diagonal of matrix for (let i = 0; i < 3; ++i) { const temp = Math.abs( matrix[Matrix3.getElementIndex(colVal[i], rowVal[i])] ); if (temp > maxDiagonal) { rotAxis = i; maxDiagonal = temp; } } let c = 1.0; let s = 0.0; const p = rowVal[rotAxis]; const q = colVal[rotAxis]; if (Math.abs(matrix[Matrix3.getElementIndex(q, p)]) > tolerance) { const qq = matrix[Matrix3.getElementIndex(q, q)]; const pp = matrix[Matrix3.getElementIndex(p, p)]; const qp = matrix[Matrix3.getElementIndex(q, p)]; const tau = (qq - pp) / 2.0 / qp; let t; if (tau < 0.0) { t = -1.0 / (-tau + Math.sqrt(1.0 + tau * tau)); } else { t = 1.0 / (tau + Math.sqrt(1.0 + tau * tau)); } c = 1.0 / Math.sqrt(1.0 + t * t); s = t * c; } result = Matrix3.clone(Matrix3.IDENTITY, result); result[Matrix3.getElementIndex(p, p)] = result[ Matrix3.getElementIndex(q, q) ] = c; result[Matrix3.getElementIndex(q, p)] = s; result[Matrix3.getElementIndex(p, q)] = -s; return result; } const jMatrix = new Matrix3(); const jMatrixTranspose = new Matrix3(); /** * Computes the eigenvectors and eigenvalues of a symmetric matrix. *

* Returns a diagonal matrix and unitary matrix such that: * matrix = unitary matrix * diagonal matrix * transpose(unitary matrix) *

*

* The values along the diagonal of the diagonal matrix are the eigenvalues. The columns * of the unitary matrix are the corresponding eigenvectors. *

* * @param {Matrix3} matrix The matrix to decompose into diagonal and unitary matrix. Expected to be symmetric. * @param {Object} [result] An object with unitary and diagonal properties which are matrices onto which to store the result. * @returns {Object} An object with unitary and diagonal properties which are the unitary and diagonal matrices, respectively. * * @example * const a = //... symetric matrix * const result = { * unitary : new Cesium.Matrix3(), * diagonal : new Cesium.Matrix3() * }; * Cesium.Matrix3.computeEigenDecomposition(a, result); * * const unitaryTranspose = Cesium.Matrix3.transpose(result.unitary, new Cesium.Matrix3()); * const b = Cesium.Matrix3.multiply(result.unitary, result.diagonal, new Cesium.Matrix3()); * Cesium.Matrix3.multiply(b, unitaryTranspose, b); // b is now equal to a * * const lambda = Cesium.Matrix3.getColumn(result.diagonal, 0, new Cesium.Cartesian3()).x; // first eigenvalue * const v = Cesium.Matrix3.getColumn(result.unitary, 0, new Cesium.Cartesian3()); // first eigenvector * const c = Cesium.Cartesian3.multiplyByScalar(v, lambda, new Cesium.Cartesian3()); // equal to Cesium.Matrix3.multiplyByVector(a, v) */ Matrix3.computeEigenDecomposition = function (matrix, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("matrix", matrix); //>>includeEnd('debug'); // This routine was created based upon Matrix Computations, 3rd ed., by Golub and Van Loan, // section 8.4.3 The Classical Jacobi Algorithm const tolerance = Math$1.CesiumMath.EPSILON20; const maxSweeps = 10; let count = 0; let sweep = 0; if (!defaultValue.defined(result)) { result = {}; } const unitaryMatrix = (result.unitary = Matrix3.clone( Matrix3.IDENTITY, result.unitary )); const diagMatrix = (result.diagonal = Matrix3.clone(matrix, result.diagonal)); const epsilon = tolerance * computeFrobeniusNorm(diagMatrix); while (sweep < maxSweeps && offDiagonalFrobeniusNorm(diagMatrix) > epsilon) { shurDecomposition(diagMatrix, jMatrix); Matrix3.transpose(jMatrix, jMatrixTranspose); Matrix3.multiply(diagMatrix, jMatrix, diagMatrix); Matrix3.multiply(jMatrixTranspose, diagMatrix, diagMatrix); Matrix3.multiply(unitaryMatrix, jMatrix, unitaryMatrix); if (++count > 2) { ++sweep; count = 0; } } return result; }; /** * Computes a matrix, which contains the absolute (unsigned) values of the provided matrix's elements. * * @param {Matrix3} matrix The matrix with signed elements. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.abs = function (matrix, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("matrix", matrix); Check.Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = Math.abs(matrix[0]); result[1] = Math.abs(matrix[1]); result[2] = Math.abs(matrix[2]); result[3] = Math.abs(matrix[3]); result[4] = Math.abs(matrix[4]); result[5] = Math.abs(matrix[5]); result[6] = Math.abs(matrix[6]); result[7] = Math.abs(matrix[7]); result[8] = Math.abs(matrix[8]); return result; }; /** * Computes the determinant of the provided matrix. * * @param {Matrix3} matrix The matrix to use. * @returns {Number} The value of the determinant of the matrix. */ Matrix3.determinant = function (matrix) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("matrix", matrix); //>>includeEnd('debug'); const m11 = matrix[0]; const m21 = matrix[3]; const m31 = matrix[6]; const m12 = matrix[1]; const m22 = matrix[4]; const m32 = matrix[7]; const m13 = matrix[2]; const m23 = matrix[5]; const m33 = matrix[8]; return ( m11 * (m22 * m33 - m23 * m32) + m12 * (m23 * m31 - m21 * m33) + m13 * (m21 * m32 - m22 * m31) ); }; /** * Computes the inverse of the provided matrix. * * @param {Matrix3} matrix The matrix to invert. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @exception {DeveloperError} matrix is not invertible. */ Matrix3.inverse = function (matrix, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("matrix", matrix); Check.Check.typeOf.object("result", result); //>>includeEnd('debug'); const m11 = matrix[0]; const m21 = matrix[1]; const m31 = matrix[2]; const m12 = matrix[3]; const m22 = matrix[4]; const m32 = matrix[5]; const m13 = matrix[6]; const m23 = matrix[7]; const m33 = matrix[8]; const determinant = Matrix3.determinant(matrix); //>>includeStart('debug', pragmas.debug); if (Math.abs(determinant) <= Math$1.CesiumMath.EPSILON15) { throw new Check.DeveloperError("matrix is not invertible"); } //>>includeEnd('debug'); result[0] = m22 * m33 - m23 * m32; result[1] = m23 * m31 - m21 * m33; result[2] = m21 * m32 - m22 * m31; result[3] = m13 * m32 - m12 * m33; result[4] = m11 * m33 - m13 * m31; result[5] = m12 * m31 - m11 * m32; result[6] = m12 * m23 - m13 * m22; result[7] = m13 * m21 - m11 * m23; result[8] = m11 * m22 - m12 * m21; const scale = 1.0 / determinant; return Matrix3.multiplyByScalar(result, scale, result); }; const scratchTransposeMatrix = new Matrix3(); /** * Computes the inverse transpose of a matrix. * * @param {Matrix3} matrix The matrix to transpose and invert. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.inverseTranspose = function (matrix, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("matrix", matrix); Check.Check.typeOf.object("result", result); //>>includeEnd('debug'); return Matrix3.inverse( Matrix3.transpose(matrix, scratchTransposeMatrix), result ); }; /** * Compares the provided matrices componentwise and returns * true if they are equal, false otherwise. * * @param {Matrix3} [left] The first matrix. * @param {Matrix3} [right] The second matrix. * @returns {Boolean} true if left and right are equal, false otherwise. */ Matrix3.equals = function (left, right) { return ( left === right || (defaultValue.defined(left) && defaultValue.defined(right) && left[0] === right[0] && left[1] === right[1] && left[2] === right[2] && left[3] === right[3] && left[4] === right[4] && left[5] === right[5] && left[6] === right[6] && left[7] === right[7] && left[8] === right[8]) ); }; /** * Compares the provided matrices componentwise and returns * true if they are within the provided epsilon, * false otherwise. * * @param {Matrix3} [left] The first matrix. * @param {Matrix3} [right] The second matrix. * @param {Number} [epsilon=0] The epsilon to use for equality testing. * @returns {Boolean} true if left and right are within the provided epsilon, false otherwise. */ Matrix3.equalsEpsilon = function (left, right, epsilon) { epsilon = defaultValue.defaultValue(epsilon, 0); return ( left === right || (defaultValue.defined(left) && defaultValue.defined(right) && Math.abs(left[0] - right[0]) <= epsilon && Math.abs(left[1] - right[1]) <= epsilon && Math.abs(left[2] - right[2]) <= epsilon && Math.abs(left[3] - right[3]) <= epsilon && Math.abs(left[4] - right[4]) <= epsilon && Math.abs(left[5] - right[5]) <= epsilon && Math.abs(left[6] - right[6]) <= epsilon && Math.abs(left[7] - right[7]) <= epsilon && Math.abs(left[8] - right[8]) <= epsilon) ); }; /** * An immutable Matrix3 instance initialized to the identity matrix. * * @type {Matrix3} * @constant */ Matrix3.IDENTITY = Object.freeze( new Matrix3(1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0) ); /** * An immutable Matrix3 instance initialized to the zero matrix. * * @type {Matrix3} * @constant */ Matrix3.ZERO = Object.freeze( new Matrix3(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) ); /** * The index into Matrix3 for column 0, row 0. * * @type {Number} * @constant */ Matrix3.COLUMN0ROW0 = 0; /** * The index into Matrix3 for column 0, row 1. * * @type {Number} * @constant */ Matrix3.COLUMN0ROW1 = 1; /** * The index into Matrix3 for column 0, row 2. * * @type {Number} * @constant */ Matrix3.COLUMN0ROW2 = 2; /** * The index into Matrix3 for column 1, row 0. * * @type {Number} * @constant */ Matrix3.COLUMN1ROW0 = 3; /** * The index into Matrix3 for column 1, row 1. * * @type {Number} * @constant */ Matrix3.COLUMN1ROW1 = 4; /** * The index into Matrix3 for column 1, row 2. * * @type {Number} * @constant */ Matrix3.COLUMN1ROW2 = 5; /** * The index into Matrix3 for column 2, row 0. * * @type {Number} * @constant */ Matrix3.COLUMN2ROW0 = 6; /** * The index into Matrix3 for column 2, row 1. * * @type {Number} * @constant */ Matrix3.COLUMN2ROW1 = 7; /** * The index into Matrix3 for column 2, row 2. * * @type {Number} * @constant */ Matrix3.COLUMN2ROW2 = 8; Object.defineProperties(Matrix3.prototype, { /** * Gets the number of items in the collection. * @memberof Matrix3.prototype * * @type {Number} */ length: { get: function () { return Matrix3.packedLength; }, }, }); /** * Duplicates the provided Matrix3 instance. * * @param {Matrix3} [result] The object onto which to store the result. * @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided. */ Matrix3.prototype.clone = function (result) { return Matrix3.clone(this, result); }; /** * Compares this matrix to the provided matrix componentwise and returns * true if they are equal, false otherwise. * * @param {Matrix3} [right] The right hand side matrix. * @returns {Boolean} true if they are equal, false otherwise. */ Matrix3.prototype.equals = function (right) { return Matrix3.equals(this, right); }; /** * @private */ Matrix3.equalsArray = function (matrix, array, offset) { return ( matrix[0] === array[offset] && matrix[1] === array[offset + 1] && matrix[2] === array[offset + 2] && matrix[3] === array[offset + 3] && matrix[4] === array[offset + 4] && matrix[5] === array[offset + 5] && matrix[6] === array[offset + 6] && matrix[7] === array[offset + 7] && matrix[8] === array[offset + 8] ); }; /** * Compares this matrix to the provided matrix componentwise and returns * true if they are within the provided epsilon, * false otherwise. * * @param {Matrix3} [right] The right hand side matrix. * @param {Number} [epsilon=0] The epsilon to use for equality testing. * @returns {Boolean} true if they are within the provided epsilon, false otherwise. */ Matrix3.prototype.equalsEpsilon = function (right, epsilon) { return Matrix3.equalsEpsilon(this, right, epsilon); }; /** * Creates a string representing this Matrix with each row being * on a separate line and in the format '(column0, column1, column2)'. * * @returns {String} A string representing the provided Matrix with each row being on a separate line and in the format '(column0, column1, column2)'. */ Matrix3.prototype.toString = function () { return ( `(${this[0]}, ${this[3]}, ${this[6]})\n` + `(${this[1]}, ${this[4]}, ${this[7]})\n` + `(${this[2]}, ${this[5]}, ${this[8]})` ); }; exports.Cartesian3 = Cartesian3; exports.Cartographic = Cartographic; exports.Ellipsoid = Ellipsoid; exports.Matrix3 = Matrix3; }));