/** * @license * Cesium - https://github.com/CesiumGS/cesium * Version 1.99 * * Copyright 2011-2022 Cesium Contributors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Columbus View (Pat. Pend.) * * Portions licensed separately. * See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details. */ define(['exports', './ArcType-89067bf8', './arrayRemoveDuplicates-3fb00ed2', './Matrix2-f9f1b94b', './Matrix3-ea964448', './ComponentDatatype-ebdce3ba', './defaultValue-135942ca', './EllipsoidRhumbLine-6161ec8c', './GeometryAttribute-51d61732', './GeometryAttributes-899f8bd0', './GeometryPipeline-576f16cd', './IndexDatatype-fa75fe25', './Math-efde0c7b', './PolygonPipeline-cf232713', './Transforms-ac2d28a9'], (function (exports, ArcType, arrayRemoveDuplicates, Matrix2, Matrix3, ComponentDatatype, defaultValue, EllipsoidRhumbLine, GeometryAttribute, GeometryAttributes, GeometryPipeline, IndexDatatype, Math$1, PolygonPipeline, Transforms) { 'use strict'; /** * A queue that can enqueue items at the end, and dequeue items from the front. * * @alias Queue * @constructor */ function Queue() { this._array = []; this._offset = 0; this._length = 0; } Object.defineProperties(Queue.prototype, { /** * The length of the queue. * * @memberof Queue.prototype * * @type {Number} * @readonly */ length: { get: function () { return this._length; }, }, }); /** * Enqueues the specified item. * * @param {*} item The item to enqueue. */ Queue.prototype.enqueue = function (item) { this._array.push(item); this._length++; }; /** * Dequeues an item. Returns undefined if the queue is empty. * * @returns {*} The the dequeued item. */ Queue.prototype.dequeue = function () { if (this._length === 0) { return undefined; } const array = this._array; let offset = this._offset; const item = array[offset]; array[offset] = undefined; offset++; if (offset > 10 && offset * 2 > array.length) { //compact array this._array = array.slice(offset); offset = 0; } this._offset = offset; this._length--; return item; }; /** * Returns the item at the front of the queue. Returns undefined if the queue is empty. * * @returns {*} The item at the front of the queue. */ Queue.prototype.peek = function () { if (this._length === 0) { return undefined; } return this._array[this._offset]; }; /** * Check whether this queue contains the specified item. * * @param {*} item The item to search for. */ Queue.prototype.contains = function (item) { return this._array.indexOf(item) !== -1; }; /** * Remove all items from the queue. */ Queue.prototype.clear = function () { this._array.length = this._offset = this._length = 0; }; /** * Sort the items in the queue in-place. * * @param {Queue.Comparator} compareFunction A function that defines the sort order. */ Queue.prototype.sort = function (compareFunction) { if (this._offset > 0) { //compact array this._array = this._array.slice(this._offset); this._offset = 0; } this._array.sort(compareFunction); }; /** * @private */ const PolygonGeometryLibrary = {}; PolygonGeometryLibrary.computeHierarchyPackedLength = function ( polygonHierarchy, CartesianX ) { let numComponents = 0; const stack = [polygonHierarchy]; while (stack.length > 0) { const hierarchy = stack.pop(); if (!defaultValue.defined(hierarchy)) { continue; } numComponents += 2; const positions = hierarchy.positions; const holes = hierarchy.holes; if (defaultValue.defined(positions) && positions.length > 0) { numComponents += positions.length * CartesianX.packedLength; } if (defaultValue.defined(holes)) { const length = holes.length; for (let i = 0; i < length; ++i) { stack.push(holes[i]); } } } return numComponents; }; PolygonGeometryLibrary.packPolygonHierarchy = function ( polygonHierarchy, array, startingIndex, CartesianX ) { const stack = [polygonHierarchy]; while (stack.length > 0) { const hierarchy = stack.pop(); if (!defaultValue.defined(hierarchy)) { continue; } const positions = hierarchy.positions; const holes = hierarchy.holes; array[startingIndex++] = defaultValue.defined(positions) ? positions.length : 0; array[startingIndex++] = defaultValue.defined(holes) ? holes.length : 0; if (defaultValue.defined(positions)) { const positionsLength = positions.length; for ( let i = 0; i < positionsLength; ++i, startingIndex += CartesianX.packedLength ) { CartesianX.pack(positions[i], array, startingIndex); } } if (defaultValue.defined(holes)) { const holesLength = holes.length; for (let j = 0; j < holesLength; ++j) { stack.push(holes[j]); } } } return startingIndex; }; PolygonGeometryLibrary.unpackPolygonHierarchy = function ( array, startingIndex, CartesianX ) { const positionsLength = array[startingIndex++]; const holesLength = array[startingIndex++]; const positions = new Array(positionsLength); const holes = holesLength > 0 ? new Array(holesLength) : undefined; for ( let i = 0; i < positionsLength; ++i, startingIndex += CartesianX.packedLength ) { positions[i] = CartesianX.unpack(array, startingIndex); } for (let j = 0; j < holesLength; ++j) { holes[j] = PolygonGeometryLibrary.unpackPolygonHierarchy( array, startingIndex, CartesianX ); startingIndex = holes[j].startingIndex; delete holes[j].startingIndex; } return { positions: positions, holes: holes, startingIndex: startingIndex, }; }; const distance2DScratch = new Matrix2.Cartesian2(); function getPointAtDistance2D(p0, p1, distance, length) { Matrix2.Cartesian2.subtract(p1, p0, distance2DScratch); Matrix2.Cartesian2.multiplyByScalar( distance2DScratch, distance / length, distance2DScratch ); Matrix2.Cartesian2.add(p0, distance2DScratch, distance2DScratch); return [distance2DScratch.x, distance2DScratch.y]; } const distanceScratch = new Matrix3.Cartesian3(); function getPointAtDistance(p0, p1, distance, length) { Matrix3.Cartesian3.subtract(p1, p0, distanceScratch); Matrix3.Cartesian3.multiplyByScalar( distanceScratch, distance / length, distanceScratch ); Matrix3.Cartesian3.add(p0, distanceScratch, distanceScratch); return [distanceScratch.x, distanceScratch.y, distanceScratch.z]; } PolygonGeometryLibrary.subdivideLineCount = function (p0, p1, minDistance) { const distance = Matrix3.Cartesian3.distance(p0, p1); const n = distance / minDistance; const countDivide = Math.max(0, Math.ceil(Math$1.CesiumMath.log2(n))); return Math.pow(2, countDivide); }; const scratchCartographic0 = new Matrix3.Cartographic(); const scratchCartographic1 = new Matrix3.Cartographic(); const scratchCartographic2 = new Matrix3.Cartographic(); const scratchCartesian0 = new Matrix3.Cartesian3(); const scratchRhumbLine = new EllipsoidRhumbLine.EllipsoidRhumbLine(); PolygonGeometryLibrary.subdivideRhumbLineCount = function ( ellipsoid, p0, p1, minDistance ) { const c0 = ellipsoid.cartesianToCartographic(p0, scratchCartographic0); const c1 = ellipsoid.cartesianToCartographic(p1, scratchCartographic1); const rhumb = new EllipsoidRhumbLine.EllipsoidRhumbLine(c0, c1, ellipsoid); const n = rhumb.surfaceDistance / minDistance; const countDivide = Math.max(0, Math.ceil(Math$1.CesiumMath.log2(n))); return Math.pow(2, countDivide); }; /** * Subdivides texture coordinates based on the subdivision of the associated world positions. * * @param {Cartesian2} t0 First texture coordinate. * @param {Cartesian2} t1 Second texture coordinate. * @param {Cartesian3} p0 First world position. * @param {Cartesian3} p1 Second world position. * @param {Number} minDistance Minimum distance for a segment. * @param {Array} result The subdivided texture coordinates. * * @private */ PolygonGeometryLibrary.subdivideTexcoordLine = function ( t0, t1, p0, p1, minDistance, result ) { // Compute the number of subdivisions. const subdivisions = PolygonGeometryLibrary.subdivideLineCount( p0, p1, minDistance ); // Compute the distance between each subdivided point. const length2D = Matrix2.Cartesian2.distance(t0, t1); const distanceBetweenCoords = length2D / subdivisions; // Resize the result array. const texcoords = result; texcoords.length = subdivisions * 2; // Compute texture coordinates using linear interpolation. let index = 0; for (let i = 0; i < subdivisions; i++) { const t = getPointAtDistance2D(t0, t1, i * distanceBetweenCoords, length2D); texcoords[index++] = t[0]; texcoords[index++] = t[1]; } return texcoords; }; PolygonGeometryLibrary.subdivideLine = function (p0, p1, minDistance, result) { const numVertices = PolygonGeometryLibrary.subdivideLineCount( p0, p1, minDistance ); const length = Matrix3.Cartesian3.distance(p0, p1); const distanceBetweenVertices = length / numVertices; if (!defaultValue.defined(result)) { result = []; } const positions = result; positions.length = numVertices * 3; let index = 0; for (let i = 0; i < numVertices; i++) { const p = getPointAtDistance(p0, p1, i * distanceBetweenVertices, length); positions[index++] = p[0]; positions[index++] = p[1]; positions[index++] = p[2]; } return positions; }; /** * Subdivides texture coordinates based on the subdivision of the associated world positions using a rhumb line. * * @param {Cartesian2} t0 First texture coordinate. * @param {Cartesian2} t1 Second texture coordinate. * @param {Ellipsoid} ellipsoid The ellipsoid. * @param {Cartesian3} p0 First world position. * @param {Cartesian3} p1 Second world position. * @param {Number} minDistance Minimum distance for a segment. * @param {Array} result The subdivided texture coordinates. * * @private */ PolygonGeometryLibrary.subdivideTexcoordRhumbLine = function ( t0, t1, ellipsoid, p0, p1, minDistance, result ) { // Compute the surface distance. const c0 = ellipsoid.cartesianToCartographic(p0, scratchCartographic0); const c1 = ellipsoid.cartesianToCartographic(p1, scratchCartographic1); scratchRhumbLine.setEndPoints(c0, c1); const n = scratchRhumbLine.surfaceDistance / minDistance; // Compute the number of subdivisions. const countDivide = Math.max(0, Math.ceil(Math$1.CesiumMath.log2(n))); const subdivisions = Math.pow(2, countDivide); // Compute the distance between each subdivided point. const length2D = Matrix2.Cartesian2.distance(t0, t1); const distanceBetweenCoords = length2D / subdivisions; // Resize the result array. const texcoords = result; texcoords.length = subdivisions * 2; // Compute texture coordinates using linear interpolation. let index = 0; for (let i = 0; i < subdivisions; i++) { const t = getPointAtDistance2D(t0, t1, i * distanceBetweenCoords, length2D); texcoords[index++] = t[0]; texcoords[index++] = t[1]; } return texcoords; }; PolygonGeometryLibrary.subdivideRhumbLine = function ( ellipsoid, p0, p1, minDistance, result ) { const c0 = ellipsoid.cartesianToCartographic(p0, scratchCartographic0); const c1 = ellipsoid.cartesianToCartographic(p1, scratchCartographic1); const rhumb = new EllipsoidRhumbLine.EllipsoidRhumbLine(c0, c1, ellipsoid); const n = rhumb.surfaceDistance / minDistance; const countDivide = Math.max(0, Math.ceil(Math$1.CesiumMath.log2(n))); const numVertices = Math.pow(2, countDivide); const distanceBetweenVertices = rhumb.surfaceDistance / numVertices; if (!defaultValue.defined(result)) { result = []; } const positions = result; positions.length = numVertices * 3; let index = 0; for (let i = 0; i < numVertices; i++) { const c = rhumb.interpolateUsingSurfaceDistance( i * distanceBetweenVertices, scratchCartographic2 ); const p = ellipsoid.cartographicToCartesian(c, scratchCartesian0); positions[index++] = p.x; positions[index++] = p.y; positions[index++] = p.z; } return positions; }; const scaleToGeodeticHeightN1 = new Matrix3.Cartesian3(); const scaleToGeodeticHeightN2 = new Matrix3.Cartesian3(); const scaleToGeodeticHeightP1 = new Matrix3.Cartesian3(); const scaleToGeodeticHeightP2 = new Matrix3.Cartesian3(); PolygonGeometryLibrary.scaleToGeodeticHeightExtruded = function ( geometry, maxHeight, minHeight, ellipsoid, perPositionHeight ) { ellipsoid = defaultValue.defaultValue(ellipsoid, Matrix3.Ellipsoid.WGS84); const n1 = scaleToGeodeticHeightN1; let n2 = scaleToGeodeticHeightN2; const p = scaleToGeodeticHeightP1; let p2 = scaleToGeodeticHeightP2; if ( defaultValue.defined(geometry) && defaultValue.defined(geometry.attributes) && defaultValue.defined(geometry.attributes.position) ) { const positions = geometry.attributes.position.values; const length = positions.length / 2; for (let i = 0; i < length; i += 3) { Matrix3.Cartesian3.fromArray(positions, i, p); ellipsoid.geodeticSurfaceNormal(p, n1); p2 = ellipsoid.scaleToGeodeticSurface(p, p2); n2 = Matrix3.Cartesian3.multiplyByScalar(n1, minHeight, n2); n2 = Matrix3.Cartesian3.add(p2, n2, n2); positions[i + length] = n2.x; positions[i + 1 + length] = n2.y; positions[i + 2 + length] = n2.z; if (perPositionHeight) { p2 = Matrix3.Cartesian3.clone(p, p2); } n2 = Matrix3.Cartesian3.multiplyByScalar(n1, maxHeight, n2); n2 = Matrix3.Cartesian3.add(p2, n2, n2); positions[i] = n2.x; positions[i + 1] = n2.y; positions[i + 2] = n2.z; } } return geometry; }; PolygonGeometryLibrary.polygonOutlinesFromHierarchy = function ( polygonHierarchy, scaleToEllipsoidSurface, ellipsoid ) { // create from a polygon hierarchy // Algorithm adapted from http://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf const polygons = []; const queue = new Queue(); queue.enqueue(polygonHierarchy); let i; let j; let length; while (queue.length !== 0) { const outerNode = queue.dequeue(); let outerRing = outerNode.positions; if (scaleToEllipsoidSurface) { length = outerRing.length; for (i = 0; i < length; i++) { ellipsoid.scaleToGeodeticSurface(outerRing[i], outerRing[i]); } } outerRing = arrayRemoveDuplicates.arrayRemoveDuplicates( outerRing, Matrix3.Cartesian3.equalsEpsilon, true ); if (outerRing.length < 3) { continue; } const numChildren = outerNode.holes ? outerNode.holes.length : 0; // The outer polygon contains inner polygons for (i = 0; i < numChildren; i++) { const hole = outerNode.holes[i]; let holePositions = hole.positions; if (scaleToEllipsoidSurface) { length = holePositions.length; for (j = 0; j < length; ++j) { ellipsoid.scaleToGeodeticSurface(holePositions[j], holePositions[j]); } } holePositions = arrayRemoveDuplicates.arrayRemoveDuplicates( holePositions, Matrix3.Cartesian3.equalsEpsilon, true ); if (holePositions.length < 3) { continue; } polygons.push(holePositions); let numGrandchildren = 0; if (defaultValue.defined(hole.holes)) { numGrandchildren = hole.holes.length; } for (j = 0; j < numGrandchildren; j++) { queue.enqueue(hole.holes[j]); } } polygons.push(outerRing); } return polygons; }; PolygonGeometryLibrary.polygonsFromHierarchy = function ( polygonHierarchy, keepDuplicates, projectPointsTo2D, scaleToEllipsoidSurface, ellipsoid ) { // create from a polygon hierarchy // Algorithm adapted from http://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf const hierarchy = []; const polygons = []; const queue = new Queue(); queue.enqueue(polygonHierarchy); while (queue.length !== 0) { const outerNode = queue.dequeue(); let outerRing = outerNode.positions; const holes = outerNode.holes; let i; let length; if (scaleToEllipsoidSurface) { length = outerRing.length; for (i = 0; i < length; i++) { ellipsoid.scaleToGeodeticSurface(outerRing[i], outerRing[i]); } } if (!keepDuplicates) { outerRing = arrayRemoveDuplicates.arrayRemoveDuplicates( outerRing, Matrix3.Cartesian3.equalsEpsilon, true ); } if (outerRing.length < 3) { continue; } let positions2D = projectPointsTo2D(outerRing); if (!defaultValue.defined(positions2D)) { continue; } const holeIndices = []; let originalWindingOrder = PolygonPipeline.PolygonPipeline.computeWindingOrder2D( positions2D ); if (originalWindingOrder === PolygonPipeline.WindingOrder.CLOCKWISE) { positions2D.reverse(); outerRing = outerRing.slice().reverse(); } let positions = outerRing.slice(); const numChildren = defaultValue.defined(holes) ? holes.length : 0; const polygonHoles = []; let j; for (i = 0; i < numChildren; i++) { const hole = holes[i]; let holePositions = hole.positions; if (scaleToEllipsoidSurface) { length = holePositions.length; for (j = 0; j < length; ++j) { ellipsoid.scaleToGeodeticSurface(holePositions[j], holePositions[j]); } } if (!keepDuplicates) { holePositions = arrayRemoveDuplicates.arrayRemoveDuplicates( holePositions, Matrix3.Cartesian3.equalsEpsilon, true ); } if (holePositions.length < 3) { continue; } const holePositions2D = projectPointsTo2D(holePositions); if (!defaultValue.defined(holePositions2D)) { continue; } originalWindingOrder = PolygonPipeline.PolygonPipeline.computeWindingOrder2D( holePositions2D ); if (originalWindingOrder === PolygonPipeline.WindingOrder.CLOCKWISE) { holePositions2D.reverse(); holePositions = holePositions.slice().reverse(); } polygonHoles.push(holePositions); holeIndices.push(positions.length); positions = positions.concat(holePositions); positions2D = positions2D.concat(holePositions2D); let numGrandchildren = 0; if (defaultValue.defined(hole.holes)) { numGrandchildren = hole.holes.length; } for (j = 0; j < numGrandchildren; j++) { queue.enqueue(hole.holes[j]); } } hierarchy.push({ outerRing: outerRing, holes: polygonHoles, }); polygons.push({ positions: positions, positions2D: positions2D, holes: holeIndices, }); } return { hierarchy: hierarchy, polygons: polygons, }; }; const computeBoundingRectangleCartesian2 = new Matrix2.Cartesian2(); const computeBoundingRectangleCartesian3 = new Matrix3.Cartesian3(); const computeBoundingRectangleQuaternion = new Transforms.Quaternion(); const computeBoundingRectangleMatrix3 = new Matrix3.Matrix3(); PolygonGeometryLibrary.computeBoundingRectangle = function ( planeNormal, projectPointTo2D, positions, angle, result ) { const rotation = Transforms.Quaternion.fromAxisAngle( planeNormal, angle, computeBoundingRectangleQuaternion ); const textureMatrix = Matrix3.Matrix3.fromQuaternion( rotation, computeBoundingRectangleMatrix3 ); let minX = Number.POSITIVE_INFINITY; let maxX = Number.NEGATIVE_INFINITY; let minY = Number.POSITIVE_INFINITY; let maxY = Number.NEGATIVE_INFINITY; const length = positions.length; for (let i = 0; i < length; ++i) { const p = Matrix3.Cartesian3.clone( positions[i], computeBoundingRectangleCartesian3 ); Matrix3.Matrix3.multiplyByVector(textureMatrix, p, p); const st = projectPointTo2D(p, computeBoundingRectangleCartesian2); if (defaultValue.defined(st)) { minX = Math.min(minX, st.x); maxX = Math.max(maxX, st.x); minY = Math.min(minY, st.y); maxY = Math.max(maxY, st.y); } } result.x = minX; result.y = minY; result.width = maxX - minX; result.height = maxY - minY; return result; }; PolygonGeometryLibrary.createGeometryFromPositions = function ( ellipsoid, polygon, textureCoordinates, granularity, perPositionHeight, vertexFormat, arcType ) { let indices = PolygonPipeline.PolygonPipeline.triangulate(polygon.positions2D, polygon.holes); /* If polygon is completely unrenderable, just use the first three vertices */ if (indices.length < 3) { indices = [0, 1, 2]; } const positions = polygon.positions; const hasTexcoords = defaultValue.defined(textureCoordinates); const texcoords = hasTexcoords ? textureCoordinates.positions : undefined; if (perPositionHeight) { const length = positions.length; const flattenedPositions = new Array(length * 3); let index = 0; for (let i = 0; i < length; i++) { const p = positions[i]; flattenedPositions[index++] = p.x; flattenedPositions[index++] = p.y; flattenedPositions[index++] = p.z; } const geometryOptions = { attributes: { position: new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE, componentsPerAttribute: 3, values: flattenedPositions, }), }, indices: indices, primitiveType: GeometryAttribute.PrimitiveType.TRIANGLES, }; if (hasTexcoords) { geometryOptions.attributes.st = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute: 2, values: Matrix2.Cartesian2.packArray(texcoords), }); } const geometry = new GeometryAttribute.Geometry(geometryOptions); if (vertexFormat.normal) { return GeometryPipeline.GeometryPipeline.computeNormal(geometry); } return geometry; } if (arcType === ArcType.ArcType.GEODESIC) { return PolygonPipeline.PolygonPipeline.computeSubdivision( ellipsoid, positions, indices, texcoords, granularity ); } else if (arcType === ArcType.ArcType.RHUMB) { return PolygonPipeline.PolygonPipeline.computeRhumbLineSubdivision( ellipsoid, positions, indices, texcoords, granularity ); } }; const computeWallTexcoordsSubdivided = []; const computeWallIndicesSubdivided = []; const p1Scratch = new Matrix3.Cartesian3(); const p2Scratch = new Matrix3.Cartesian3(); PolygonGeometryLibrary.computeWallGeometry = function ( positions, textureCoordinates, ellipsoid, granularity, perPositionHeight, arcType ) { let edgePositions; let topEdgeLength; let i; let p1; let p2; let t1; let t2; let edgeTexcoords; let topEdgeTexcoordLength; let length = positions.length; let index = 0; let textureIndex = 0; const hasTexcoords = defaultValue.defined(textureCoordinates); const texcoords = hasTexcoords ? textureCoordinates.positions : undefined; if (!perPositionHeight) { const minDistance = Math$1.CesiumMath.chordLength( granularity, ellipsoid.maximumRadius ); let numVertices = 0; if (arcType === ArcType.ArcType.GEODESIC) { for (i = 0; i < length; i++) { numVertices += PolygonGeometryLibrary.subdivideLineCount( positions[i], positions[(i + 1) % length], minDistance ); } } else if (arcType === ArcType.ArcType.RHUMB) { for (i = 0; i < length; i++) { numVertices += PolygonGeometryLibrary.subdivideRhumbLineCount( ellipsoid, positions[i], positions[(i + 1) % length], minDistance ); } } topEdgeLength = (numVertices + length) * 3; edgePositions = new Array(topEdgeLength * 2); if (hasTexcoords) { topEdgeTexcoordLength = (numVertices + length) * 2; edgeTexcoords = new Array(topEdgeTexcoordLength * 2); } for (i = 0; i < length; i++) { p1 = positions[i]; p2 = positions[(i + 1) % length]; let tempPositions; let tempTexcoords; if (hasTexcoords) { t1 = texcoords[i]; t2 = texcoords[(i + 1) % length]; } if (arcType === ArcType.ArcType.GEODESIC) { tempPositions = PolygonGeometryLibrary.subdivideLine( p1, p2, minDistance, computeWallIndicesSubdivided ); if (hasTexcoords) { tempTexcoords = PolygonGeometryLibrary.subdivideTexcoordLine( t1, t2, p1, p2, minDistance, computeWallTexcoordsSubdivided ); } } else if (arcType === ArcType.ArcType.RHUMB) { tempPositions = PolygonGeometryLibrary.subdivideRhumbLine( ellipsoid, p1, p2, minDistance, computeWallIndicesSubdivided ); if (hasTexcoords) { tempTexcoords = PolygonGeometryLibrary.subdivideTexcoordRhumbLine( t1, t2, ellipsoid, p1, p2, minDistance, computeWallTexcoordsSubdivided ); } } const tempPositionsLength = tempPositions.length; for (let j = 0; j < tempPositionsLength; ++j, ++index) { edgePositions[index] = tempPositions[j]; edgePositions[index + topEdgeLength] = tempPositions[j]; } edgePositions[index] = p2.x; edgePositions[index + topEdgeLength] = p2.x; ++index; edgePositions[index] = p2.y; edgePositions[index + topEdgeLength] = p2.y; ++index; edgePositions[index] = p2.z; edgePositions[index + topEdgeLength] = p2.z; ++index; if (hasTexcoords) { const tempTexcoordsLength = tempTexcoords.length; for (let k = 0; k < tempTexcoordsLength; ++k, ++textureIndex) { edgeTexcoords[textureIndex] = tempTexcoords[k]; edgeTexcoords[textureIndex + topEdgeTexcoordLength] = tempTexcoords[k]; } edgeTexcoords[textureIndex] = t2.x; edgeTexcoords[textureIndex + topEdgeTexcoordLength] = t2.x; ++textureIndex; edgeTexcoords[textureIndex] = t2.y; edgeTexcoords[textureIndex + topEdgeTexcoordLength] = t2.y; ++textureIndex; } } } else { topEdgeLength = length * 3 * 2; edgePositions = new Array(topEdgeLength * 2); if (hasTexcoords) { topEdgeTexcoordLength = length * 2 * 2; edgeTexcoords = new Array(topEdgeTexcoordLength * 2); } for (i = 0; i < length; i++) { p1 = positions[i]; p2 = positions[(i + 1) % length]; edgePositions[index] = edgePositions[index + topEdgeLength] = p1.x; ++index; edgePositions[index] = edgePositions[index + topEdgeLength] = p1.y; ++index; edgePositions[index] = edgePositions[index + topEdgeLength] = p1.z; ++index; edgePositions[index] = edgePositions[index + topEdgeLength] = p2.x; ++index; edgePositions[index] = edgePositions[index + topEdgeLength] = p2.y; ++index; edgePositions[index] = edgePositions[index + topEdgeLength] = p2.z; ++index; if (hasTexcoords) { t1 = texcoords[i]; t2 = texcoords[(i + 1) % length]; edgeTexcoords[textureIndex] = edgeTexcoords[ textureIndex + topEdgeTexcoordLength ] = t1.x; ++textureIndex; edgeTexcoords[textureIndex] = edgeTexcoords[ textureIndex + topEdgeTexcoordLength ] = t1.y; ++textureIndex; edgeTexcoords[textureIndex] = edgeTexcoords[ textureIndex + topEdgeTexcoordLength ] = t2.x; ++textureIndex; edgeTexcoords[textureIndex] = edgeTexcoords[ textureIndex + topEdgeTexcoordLength ] = t2.y; ++textureIndex; } } } length = edgePositions.length; const indices = IndexDatatype.IndexDatatype.createTypedArray( length / 3, length - positions.length * 6 ); let edgeIndex = 0; length /= 6; for (i = 0; i < length; i++) { const UL = i; const UR = UL + 1; const LL = UL + length; const LR = LL + 1; p1 = Matrix3.Cartesian3.fromArray(edgePositions, UL * 3, p1Scratch); p2 = Matrix3.Cartesian3.fromArray(edgePositions, UR * 3, p2Scratch); if ( Matrix3.Cartesian3.equalsEpsilon( p1, p2, Math$1.CesiumMath.EPSILON10, Math$1.CesiumMath.EPSILON10 ) ) { //skip corner continue; } indices[edgeIndex++] = UL; indices[edgeIndex++] = LL; indices[edgeIndex++] = UR; indices[edgeIndex++] = UR; indices[edgeIndex++] = LL; indices[edgeIndex++] = LR; } const geometryOptions = { attributes: new GeometryAttributes.GeometryAttributes({ position: new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE, componentsPerAttribute: 3, values: edgePositions, }), }), indices: indices, primitiveType: GeometryAttribute.PrimitiveType.TRIANGLES, }; if (hasTexcoords) { geometryOptions.attributes.st = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute: 2, values: edgeTexcoords, }); } const geometry = new GeometryAttribute.Geometry(geometryOptions); return geometry; }; var PolygonGeometryLibrary$1 = PolygonGeometryLibrary; exports.PolygonGeometryLibrary = PolygonGeometryLibrary$1; }));