/** * @license * Cesium - https://github.com/CesiumGS/cesium * Version 1.99 * * Copyright 2011-2022 Cesium Contributors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Columbus View (Pat. Pend.) * * Portions licensed separately. * See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details. */ define(['./defaultValue-135942ca', './Matrix3-ea964448', './ArcType-89067bf8', './Transforms-ac2d28a9', './Color-7ea3613e', './ComponentDatatype-ebdce3ba', './Check-40d84a28', './GeometryAttribute-51d61732', './GeometryAttributes-899f8bd0', './IndexDatatype-fa75fe25', './Math-efde0c7b', './PolylinePipeline-b636012e', './Matrix2-f9f1b94b', './RuntimeError-f0dada00', './combine-462d91dd', './WebGLConstants-fcb70ee3', './EllipsoidGeodesic-08772132', './EllipsoidRhumbLine-6161ec8c', './IntersectionTests-4ab30dca', './Plane-93af52b2'], (function (defaultValue, Matrix3, ArcType, Transforms, Color, ComponentDatatype, Check, GeometryAttribute, GeometryAttributes, IndexDatatype, Math, PolylinePipeline, Matrix2, RuntimeError, combine, WebGLConstants, EllipsoidGeodesic, EllipsoidRhumbLine, IntersectionTests, Plane) { 'use strict'; function interpolateColors(p0, p1, color0, color1, minDistance, array, offset) { const numPoints = PolylinePipeline.PolylinePipeline.numberOfPoints(p0, p1, minDistance); let i; const r0 = color0.red; const g0 = color0.green; const b0 = color0.blue; const a0 = color0.alpha; const r1 = color1.red; const g1 = color1.green; const b1 = color1.blue; const a1 = color1.alpha; if (Color.Color.equals(color0, color1)) { for (i = 0; i < numPoints; i++) { array[offset++] = Color.Color.floatToByte(r0); array[offset++] = Color.Color.floatToByte(g0); array[offset++] = Color.Color.floatToByte(b0); array[offset++] = Color.Color.floatToByte(a0); } return offset; } const redPerVertex = (r1 - r0) / numPoints; const greenPerVertex = (g1 - g0) / numPoints; const bluePerVertex = (b1 - b0) / numPoints; const alphaPerVertex = (a1 - a0) / numPoints; let index = offset; for (i = 0; i < numPoints; i++) { array[index++] = Color.Color.floatToByte(r0 + i * redPerVertex); array[index++] = Color.Color.floatToByte(g0 + i * greenPerVertex); array[index++] = Color.Color.floatToByte(b0 + i * bluePerVertex); array[index++] = Color.Color.floatToByte(a0 + i * alphaPerVertex); } return index; } /** * A description of a polyline modeled as a line strip; the first two positions define a line segment, * and each additional position defines a line segment from the previous position. * * @alias SimplePolylineGeometry * @constructor * * @param {Object} options Object with the following properties: * @param {Cartesian3[]} options.positions An array of {@link Cartesian3} defining the positions in the polyline as a line strip. * @param {Color[]} [options.colors] An Array of {@link Color} defining the per vertex or per segment colors. * @param {Boolean} [options.colorsPerVertex=false] A boolean that determines whether the colors will be flat across each segment of the line or interpolated across the vertices. * @param {ArcType} [options.arcType=ArcType.GEODESIC] The type of line the polyline segments must follow. * @param {Number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude if options.arcType is not ArcType.NONE. Determines the number of positions in the buffer. * @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid to be used as a reference. * * @exception {DeveloperError} At least two positions are required. * @exception {DeveloperError} colors has an invalid length. * * @see SimplePolylineGeometry#createGeometry * * @example * // A polyline with two connected line segments * const polyline = new Cesium.SimplePolylineGeometry({ * positions : Cesium.Cartesian3.fromDegreesArray([ * 0.0, 0.0, * 5.0, 0.0, * 5.0, 5.0 * ]) * }); * const geometry = Cesium.SimplePolylineGeometry.createGeometry(polyline); */ function SimplePolylineGeometry(options) { options = defaultValue.defaultValue(options, defaultValue.defaultValue.EMPTY_OBJECT); const positions = options.positions; const colors = options.colors; const colorsPerVertex = defaultValue.defaultValue(options.colorsPerVertex, false); //>>includeStart('debug', pragmas.debug); if (!defaultValue.defined(positions) || positions.length < 2) { throw new Check.DeveloperError("At least two positions are required."); } if ( defaultValue.defined(colors) && ((colorsPerVertex && colors.length < positions.length) || (!colorsPerVertex && colors.length < positions.length - 1)) ) { throw new Check.DeveloperError("colors has an invalid length."); } //>>includeEnd('debug'); this._positions = positions; this._colors = colors; this._colorsPerVertex = colorsPerVertex; this._arcType = defaultValue.defaultValue(options.arcType, ArcType.ArcType.GEODESIC); this._granularity = defaultValue.defaultValue( options.granularity, Math.CesiumMath.RADIANS_PER_DEGREE ); this._ellipsoid = defaultValue.defaultValue(options.ellipsoid, Matrix3.Ellipsoid.WGS84); this._workerName = "createSimplePolylineGeometry"; let numComponents = 1 + positions.length * Matrix3.Cartesian3.packedLength; numComponents += defaultValue.defined(colors) ? 1 + colors.length * Color.Color.packedLength : 1; /** * The number of elements used to pack the object into an array. * @type {Number} */ this.packedLength = numComponents + Matrix3.Ellipsoid.packedLength + 3; } /** * Stores the provided instance into the provided array. * * @param {SimplePolylineGeometry} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ SimplePolylineGeometry.pack = function (value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); if (!defaultValue.defined(value)) { throw new Check.DeveloperError("value is required"); } if (!defaultValue.defined(array)) { throw new Check.DeveloperError("array is required"); } //>>includeEnd('debug'); startingIndex = defaultValue.defaultValue(startingIndex, 0); let i; const positions = value._positions; let length = positions.length; array[startingIndex++] = length; for (i = 0; i < length; ++i, startingIndex += Matrix3.Cartesian3.packedLength) { Matrix3.Cartesian3.pack(positions[i], array, startingIndex); } const colors = value._colors; length = defaultValue.defined(colors) ? colors.length : 0.0; array[startingIndex++] = length; for (i = 0; i < length; ++i, startingIndex += Color.Color.packedLength) { Color.Color.pack(colors[i], array, startingIndex); } Matrix3.Ellipsoid.pack(value._ellipsoid, array, startingIndex); startingIndex += Matrix3.Ellipsoid.packedLength; array[startingIndex++] = value._colorsPerVertex ? 1.0 : 0.0; array[startingIndex++] = value._arcType; array[startingIndex] = value._granularity; return array; }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {SimplePolylineGeometry} [result] The object into which to store the result. * @returns {SimplePolylineGeometry} The modified result parameter or a new SimplePolylineGeometry instance if one was not provided. */ SimplePolylineGeometry.unpack = function (array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); if (!defaultValue.defined(array)) { throw new Check.DeveloperError("array is required"); } //>>includeEnd('debug'); startingIndex = defaultValue.defaultValue(startingIndex, 0); let i; let length = array[startingIndex++]; const positions = new Array(length); for (i = 0; i < length; ++i, startingIndex += Matrix3.Cartesian3.packedLength) { positions[i] = Matrix3.Cartesian3.unpack(array, startingIndex); } length = array[startingIndex++]; const colors = length > 0 ? new Array(length) : undefined; for (i = 0; i < length; ++i, startingIndex += Color.Color.packedLength) { colors[i] = Color.Color.unpack(array, startingIndex); } const ellipsoid = Matrix3.Ellipsoid.unpack(array, startingIndex); startingIndex += Matrix3.Ellipsoid.packedLength; const colorsPerVertex = array[startingIndex++] === 1.0; const arcType = array[startingIndex++]; const granularity = array[startingIndex]; if (!defaultValue.defined(result)) { return new SimplePolylineGeometry({ positions: positions, colors: colors, ellipsoid: ellipsoid, colorsPerVertex: colorsPerVertex, arcType: arcType, granularity: granularity, }); } result._positions = positions; result._colors = colors; result._ellipsoid = ellipsoid; result._colorsPerVertex = colorsPerVertex; result._arcType = arcType; result._granularity = granularity; return result; }; const scratchArray1 = new Array(2); const scratchArray2 = new Array(2); const generateArcOptionsScratch = { positions: scratchArray1, height: scratchArray2, ellipsoid: undefined, minDistance: undefined, granularity: undefined, }; /** * Computes the geometric representation of a simple polyline, including its vertices, indices, and a bounding sphere. * * @param {SimplePolylineGeometry} simplePolylineGeometry A description of the polyline. * @returns {Geometry|undefined} The computed vertices and indices. */ SimplePolylineGeometry.createGeometry = function (simplePolylineGeometry) { const positions = simplePolylineGeometry._positions; const colors = simplePolylineGeometry._colors; const colorsPerVertex = simplePolylineGeometry._colorsPerVertex; const arcType = simplePolylineGeometry._arcType; const granularity = simplePolylineGeometry._granularity; const ellipsoid = simplePolylineGeometry._ellipsoid; const minDistance = Math.CesiumMath.chordLength( granularity, ellipsoid.maximumRadius ); const perSegmentColors = defaultValue.defined(colors) && !colorsPerVertex; let i; const length = positions.length; let positionValues; let numberOfPositions; let colorValues; let color; let offset = 0; if (arcType === ArcType.ArcType.GEODESIC || arcType === ArcType.ArcType.RHUMB) { let subdivisionSize; let numberOfPointsFunction; let generateArcFunction; if (arcType === ArcType.ArcType.GEODESIC) { subdivisionSize = Math.CesiumMath.chordLength( granularity, ellipsoid.maximumRadius ); numberOfPointsFunction = PolylinePipeline.PolylinePipeline.numberOfPoints; generateArcFunction = PolylinePipeline.PolylinePipeline.generateArc; } else { subdivisionSize = granularity; numberOfPointsFunction = PolylinePipeline.PolylinePipeline.numberOfPointsRhumbLine; generateArcFunction = PolylinePipeline.PolylinePipeline.generateRhumbArc; } const heights = PolylinePipeline.PolylinePipeline.extractHeights(positions, ellipsoid); const generateArcOptions = generateArcOptionsScratch; if (arcType === ArcType.ArcType.GEODESIC) { generateArcOptions.minDistance = minDistance; } else { generateArcOptions.granularity = granularity; } generateArcOptions.ellipsoid = ellipsoid; if (perSegmentColors) { let positionCount = 0; for (i = 0; i < length - 1; i++) { positionCount += numberOfPointsFunction( positions[i], positions[i + 1], subdivisionSize ) + 1; } positionValues = new Float64Array(positionCount * 3); colorValues = new Uint8Array(positionCount * 4); generateArcOptions.positions = scratchArray1; generateArcOptions.height = scratchArray2; let ci = 0; for (i = 0; i < length - 1; ++i) { scratchArray1[0] = positions[i]; scratchArray1[1] = positions[i + 1]; scratchArray2[0] = heights[i]; scratchArray2[1] = heights[i + 1]; const pos = generateArcFunction(generateArcOptions); if (defaultValue.defined(colors)) { const segLen = pos.length / 3; color = colors[i]; for (let k = 0; k < segLen; ++k) { colorValues[ci++] = Color.Color.floatToByte(color.red); colorValues[ci++] = Color.Color.floatToByte(color.green); colorValues[ci++] = Color.Color.floatToByte(color.blue); colorValues[ci++] = Color.Color.floatToByte(color.alpha); } } positionValues.set(pos, offset); offset += pos.length; } } else { generateArcOptions.positions = positions; generateArcOptions.height = heights; positionValues = new Float64Array( generateArcFunction(generateArcOptions) ); if (defaultValue.defined(colors)) { colorValues = new Uint8Array((positionValues.length / 3) * 4); for (i = 0; i < length - 1; ++i) { const p0 = positions[i]; const p1 = positions[i + 1]; const c0 = colors[i]; const c1 = colors[i + 1]; offset = interpolateColors( p0, p1, c0, c1, minDistance, colorValues, offset ); } const lastColor = colors[length - 1]; colorValues[offset++] = Color.Color.floatToByte(lastColor.red); colorValues[offset++] = Color.Color.floatToByte(lastColor.green); colorValues[offset++] = Color.Color.floatToByte(lastColor.blue); colorValues[offset++] = Color.Color.floatToByte(lastColor.alpha); } } } else { numberOfPositions = perSegmentColors ? length * 2 - 2 : length; positionValues = new Float64Array(numberOfPositions * 3); colorValues = defaultValue.defined(colors) ? new Uint8Array(numberOfPositions * 4) : undefined; let positionIndex = 0; let colorIndex = 0; for (i = 0; i < length; ++i) { const p = positions[i]; if (perSegmentColors && i > 0) { Matrix3.Cartesian3.pack(p, positionValues, positionIndex); positionIndex += 3; color = colors[i - 1]; colorValues[colorIndex++] = Color.Color.floatToByte(color.red); colorValues[colorIndex++] = Color.Color.floatToByte(color.green); colorValues[colorIndex++] = Color.Color.floatToByte(color.blue); colorValues[colorIndex++] = Color.Color.floatToByte(color.alpha); } if (perSegmentColors && i === length - 1) { break; } Matrix3.Cartesian3.pack(p, positionValues, positionIndex); positionIndex += 3; if (defaultValue.defined(colors)) { color = colors[i]; colorValues[colorIndex++] = Color.Color.floatToByte(color.red); colorValues[colorIndex++] = Color.Color.floatToByte(color.green); colorValues[colorIndex++] = Color.Color.floatToByte(color.blue); colorValues[colorIndex++] = Color.Color.floatToByte(color.alpha); } } } const attributes = new GeometryAttributes.GeometryAttributes(); attributes.position = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE, componentsPerAttribute: 3, values: positionValues, }); if (defaultValue.defined(colors)) { attributes.color = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE, componentsPerAttribute: 4, values: colorValues, normalize: true, }); } numberOfPositions = positionValues.length / 3; const numberOfIndices = (numberOfPositions - 1) * 2; const indices = IndexDatatype.IndexDatatype.createTypedArray( numberOfPositions, numberOfIndices ); let index = 0; for (i = 0; i < numberOfPositions - 1; ++i) { indices[index++] = i; indices[index++] = i + 1; } return new GeometryAttribute.Geometry({ attributes: attributes, indices: indices, primitiveType: GeometryAttribute.PrimitiveType.LINES, boundingSphere: Transforms.BoundingSphere.fromPoints(positions), }); }; function createSimplePolylineGeometry(simplePolylineGeometry, offset) { if (defaultValue.defined(offset)) { simplePolylineGeometry = SimplePolylineGeometry.unpack( simplePolylineGeometry, offset ); } simplePolylineGeometry._ellipsoid = Matrix3.Ellipsoid.clone( simplePolylineGeometry._ellipsoid ); return SimplePolylineGeometry.createGeometry(simplePolylineGeometry); } return createSimplePolylineGeometry; }));