/** * @license * Cesium - https://github.com/CesiumGS/cesium * Version 1.99 * * Copyright 2011-2022 Cesium Contributors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Columbus View (Pat. Pend.) * * Portions licensed separately. * See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details. */ define(['./AttributeCompression-53c7fda2', './Transforms-ac2d28a9', './Matrix2-f9f1b94b', './Matrix3-ea964448', './defaultValue-135942ca', './TerrainEncoding-3edd4345', './IndexDatatype-fa75fe25', './Check-40d84a28', './Math-efde0c7b', './OrientedBoundingBox-14c97a6c', './createTaskProcessorWorker', './ComponentDatatype-ebdce3ba', './WebGLConstants-fcb70ee3', './combine-462d91dd', './RuntimeError-f0dada00', './EllipsoidTangentPlane-244dda7a', './AxisAlignedBoundingBox-48df2a2e', './IntersectionTests-4ab30dca', './Plane-93af52b2'], (function (AttributeCompression, Transforms, Matrix2, Matrix3, defaultValue, TerrainEncoding, IndexDatatype, Check, Math$1, OrientedBoundingBox, createTaskProcessorWorker, ComponentDatatype, WebGLConstants, combine, RuntimeError, EllipsoidTangentPlane, AxisAlignedBoundingBox, IntersectionTests, Plane) { 'use strict'; /** * Contains functions for operating on 2D triangles. * * @namespace Intersections2D */ const Intersections2D = {}; /** * Splits a 2D triangle at given axis-aligned threshold value and returns the resulting * polygon on a given side of the threshold. The resulting polygon may have 0, 1, 2, * 3, or 4 vertices. * * @param {Number} threshold The threshold coordinate value at which to clip the triangle. * @param {Boolean} keepAbove true to keep the portion of the triangle above the threshold, or false * to keep the portion below. * @param {Number} u0 The coordinate of the first vertex in the triangle, in counter-clockwise order. * @param {Number} u1 The coordinate of the second vertex in the triangle, in counter-clockwise order. * @param {Number} u2 The coordinate of the third vertex in the triangle, in counter-clockwise order. * @param {Number[]} [result] The array into which to copy the result. If this parameter is not supplied, * a new array is constructed and returned. * @returns {Number[]} The polygon that results after the clip, specified as a list of * vertices. The vertices are specified in counter-clockwise order. * Each vertex is either an index from the existing list (identified as * a 0, 1, or 2) or -1 indicating a new vertex not in the original triangle. * For new vertices, the -1 is followed by three additional numbers: the * index of each of the two original vertices forming the line segment that * the new vertex lies on, and the fraction of the distance from the first * vertex to the second one. * * @example * const result = Cesium.Intersections2D.clipTriangleAtAxisAlignedThreshold(0.5, false, 0.2, 0.6, 0.4); * // result === [2, 0, -1, 1, 0, 0.25, -1, 1, 2, 0.5] */ Intersections2D.clipTriangleAtAxisAlignedThreshold = function ( threshold, keepAbove, u0, u1, u2, result ) { //>>includeStart('debug', pragmas.debug); if (!defaultValue.defined(threshold)) { throw new Check.DeveloperError("threshold is required."); } if (!defaultValue.defined(keepAbove)) { throw new Check.DeveloperError("keepAbove is required."); } if (!defaultValue.defined(u0)) { throw new Check.DeveloperError("u0 is required."); } if (!defaultValue.defined(u1)) { throw new Check.DeveloperError("u1 is required."); } if (!defaultValue.defined(u2)) { throw new Check.DeveloperError("u2 is required."); } //>>includeEnd('debug'); if (!defaultValue.defined(result)) { result = []; } else { result.length = 0; } let u0Behind; let u1Behind; let u2Behind; if (keepAbove) { u0Behind = u0 < threshold; u1Behind = u1 < threshold; u2Behind = u2 < threshold; } else { u0Behind = u0 > threshold; u1Behind = u1 > threshold; u2Behind = u2 > threshold; } const numBehind = u0Behind + u1Behind + u2Behind; let u01Ratio; let u02Ratio; let u12Ratio; let u10Ratio; let u20Ratio; let u21Ratio; if (numBehind === 1) { if (u0Behind) { u01Ratio = (threshold - u0) / (u1 - u0); u02Ratio = (threshold - u0) / (u2 - u0); result.push(1); result.push(2); if (u02Ratio !== 1.0) { result.push(-1); result.push(0); result.push(2); result.push(u02Ratio); } if (u01Ratio !== 1.0) { result.push(-1); result.push(0); result.push(1); result.push(u01Ratio); } } else if (u1Behind) { u12Ratio = (threshold - u1) / (u2 - u1); u10Ratio = (threshold - u1) / (u0 - u1); result.push(2); result.push(0); if (u10Ratio !== 1.0) { result.push(-1); result.push(1); result.push(0); result.push(u10Ratio); } if (u12Ratio !== 1.0) { result.push(-1); result.push(1); result.push(2); result.push(u12Ratio); } } else if (u2Behind) { u20Ratio = (threshold - u2) / (u0 - u2); u21Ratio = (threshold - u2) / (u1 - u2); result.push(0); result.push(1); if (u21Ratio !== 1.0) { result.push(-1); result.push(2); result.push(1); result.push(u21Ratio); } if (u20Ratio !== 1.0) { result.push(-1); result.push(2); result.push(0); result.push(u20Ratio); } } } else if (numBehind === 2) { if (!u0Behind && u0 !== threshold) { u10Ratio = (threshold - u1) / (u0 - u1); u20Ratio = (threshold - u2) / (u0 - u2); result.push(0); result.push(-1); result.push(1); result.push(0); result.push(u10Ratio); result.push(-1); result.push(2); result.push(0); result.push(u20Ratio); } else if (!u1Behind && u1 !== threshold) { u21Ratio = (threshold - u2) / (u1 - u2); u01Ratio = (threshold - u0) / (u1 - u0); result.push(1); result.push(-1); result.push(2); result.push(1); result.push(u21Ratio); result.push(-1); result.push(0); result.push(1); result.push(u01Ratio); } else if (!u2Behind && u2 !== threshold) { u02Ratio = (threshold - u0) / (u2 - u0); u12Ratio = (threshold - u1) / (u2 - u1); result.push(2); result.push(-1); result.push(0); result.push(2); result.push(u02Ratio); result.push(-1); result.push(1); result.push(2); result.push(u12Ratio); } } else if (numBehind !== 3) { // Completely in front of threshold result.push(0); result.push(1); result.push(2); } // else Completely behind threshold return result; }; /** * Compute the barycentric coordinates of a 2D position within a 2D triangle. * * @param {Number} x The x coordinate of the position for which to find the barycentric coordinates. * @param {Number} y The y coordinate of the position for which to find the barycentric coordinates. * @param {Number} x1 The x coordinate of the triangle's first vertex. * @param {Number} y1 The y coordinate of the triangle's first vertex. * @param {Number} x2 The x coordinate of the triangle's second vertex. * @param {Number} y2 The y coordinate of the triangle's second vertex. * @param {Number} x3 The x coordinate of the triangle's third vertex. * @param {Number} y3 The y coordinate of the triangle's third vertex. * @param {Cartesian3} [result] The instance into to which to copy the result. If this parameter * is undefined, a new instance is created and returned. * @returns {Cartesian3} The barycentric coordinates of the position within the triangle. * * @example * const result = Cesium.Intersections2D.computeBarycentricCoordinates(0.0, 0.0, 0.0, 1.0, -1, -0.5, 1, -0.5); * // result === new Cesium.Cartesian3(1.0 / 3.0, 1.0 / 3.0, 1.0 / 3.0); */ Intersections2D.computeBarycentricCoordinates = function ( x, y, x1, y1, x2, y2, x3, y3, result ) { //>>includeStart('debug', pragmas.debug); if (!defaultValue.defined(x)) { throw new Check.DeveloperError("x is required."); } if (!defaultValue.defined(y)) { throw new Check.DeveloperError("y is required."); } if (!defaultValue.defined(x1)) { throw new Check.DeveloperError("x1 is required."); } if (!defaultValue.defined(y1)) { throw new Check.DeveloperError("y1 is required."); } if (!defaultValue.defined(x2)) { throw new Check.DeveloperError("x2 is required."); } if (!defaultValue.defined(y2)) { throw new Check.DeveloperError("y2 is required."); } if (!defaultValue.defined(x3)) { throw new Check.DeveloperError("x3 is required."); } if (!defaultValue.defined(y3)) { throw new Check.DeveloperError("y3 is required."); } //>>includeEnd('debug'); const x1mx3 = x1 - x3; const x3mx2 = x3 - x2; const y2my3 = y2 - y3; const y1my3 = y1 - y3; const inverseDeterminant = 1.0 / (y2my3 * x1mx3 + x3mx2 * y1my3); const ymy3 = y - y3; const xmx3 = x - x3; const l1 = (y2my3 * xmx3 + x3mx2 * ymy3) * inverseDeterminant; const l2 = (-y1my3 * xmx3 + x1mx3 * ymy3) * inverseDeterminant; const l3 = 1.0 - l1 - l2; if (defaultValue.defined(result)) { result.x = l1; result.y = l2; result.z = l3; return result; } return new Matrix3.Cartesian3(l1, l2, l3); }; /** * Compute the intersection between 2 line segments * * @param {Number} x00 The x coordinate of the first line's first vertex. * @param {Number} y00 The y coordinate of the first line's first vertex. * @param {Number} x01 The x coordinate of the first line's second vertex. * @param {Number} y01 The y coordinate of the first line's second vertex. * @param {Number} x10 The x coordinate of the second line's first vertex. * @param {Number} y10 The y coordinate of the second line's first vertex. * @param {Number} x11 The x coordinate of the second line's second vertex. * @param {Number} y11 The y coordinate of the second line's second vertex. * @param {Cartesian2} [result] The instance into to which to copy the result. If this parameter * is undefined, a new instance is created and returned. * @returns {Cartesian2} The intersection point, undefined if there is no intersection point or lines are coincident. * * @example * const result = Cesium.Intersections2D.computeLineSegmentLineSegmentIntersection(0.0, 0.0, 0.0, 2.0, -1, 1, 1, 1); * // result === new Cesium.Cartesian2(0.0, 1.0); */ Intersections2D.computeLineSegmentLineSegmentIntersection = function ( x00, y00, x01, y01, x10, y10, x11, y11, result ) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number("x00", x00); Check.Check.typeOf.number("y00", y00); Check.Check.typeOf.number("x01", x01); Check.Check.typeOf.number("y01", y01); Check.Check.typeOf.number("x10", x10); Check.Check.typeOf.number("y10", y10); Check.Check.typeOf.number("x11", x11); Check.Check.typeOf.number("y11", y11); //>>includeEnd('debug'); const numerator1A = (x11 - x10) * (y00 - y10) - (y11 - y10) * (x00 - x10); const numerator1B = (x01 - x00) * (y00 - y10) - (y01 - y00) * (x00 - x10); const denominator1 = (y11 - y10) * (x01 - x00) - (x11 - x10) * (y01 - y00); // If denominator = 0, then lines are parallel. If denominator = 0 and both numerators are 0, then coincident if (denominator1 === 0) { return; } const ua1 = numerator1A / denominator1; const ub1 = numerator1B / denominator1; if (ua1 >= 0 && ua1 <= 1 && ub1 >= 0 && ub1 <= 1) { if (!defaultValue.defined(result)) { result = new Matrix2.Cartesian2(); } result.x = x00 + ua1 * (x01 - x00); result.y = y00 + ua1 * (y01 - y00); return result; } }; var Intersections2D$1 = Intersections2D; const maxShort = 32767; const halfMaxShort = (maxShort / 2) | 0; const clipScratch = []; const clipScratch2 = []; const verticesScratch = []; const cartographicScratch = new Matrix3.Cartographic(); let cartesian3Scratch = new Matrix3.Cartesian3(); const uScratch = []; const vScratch = []; const heightScratch = []; const indicesScratch = []; const normalsScratch = []; const horizonOcclusionPointScratch = new Matrix3.Cartesian3(); const boundingSphereScratch = new Transforms.BoundingSphere(); const orientedBoundingBoxScratch = new OrientedBoundingBox.OrientedBoundingBox(); const decodeTexCoordsScratch = new Matrix2.Cartesian2(); const octEncodedNormalScratch = new Matrix3.Cartesian3(); function upsampleQuantizedTerrainMesh(parameters, transferableObjects) { const isEastChild = parameters.isEastChild; const isNorthChild = parameters.isNorthChild; const minU = isEastChild ? halfMaxShort : 0; const maxU = isEastChild ? maxShort : halfMaxShort; const minV = isNorthChild ? halfMaxShort : 0; const maxV = isNorthChild ? maxShort : halfMaxShort; const uBuffer = uScratch; const vBuffer = vScratch; const heightBuffer = heightScratch; const normalBuffer = normalsScratch; uBuffer.length = 0; vBuffer.length = 0; heightBuffer.length = 0; normalBuffer.length = 0; const indices = indicesScratch; indices.length = 0; const vertexMap = {}; const parentVertices = parameters.vertices; let parentIndices = parameters.indices; parentIndices = parentIndices.subarray(0, parameters.indexCountWithoutSkirts); const encoding = TerrainEncoding.TerrainEncoding.clone(parameters.encoding); const hasVertexNormals = encoding.hasVertexNormals; let vertexCount = 0; const quantizedVertexCount = parameters.vertexCountWithoutSkirts; const parentMinimumHeight = parameters.minimumHeight; const parentMaximumHeight = parameters.maximumHeight; const parentUBuffer = new Array(quantizedVertexCount); const parentVBuffer = new Array(quantizedVertexCount); const parentHeightBuffer = new Array(quantizedVertexCount); const parentNormalBuffer = hasVertexNormals ? new Array(quantizedVertexCount * 2) : undefined; const threshold = 20; let height; let i, n; let u, v; for (i = 0, n = 0; i < quantizedVertexCount; ++i, n += 2) { const texCoords = encoding.decodeTextureCoordinates( parentVertices, i, decodeTexCoordsScratch ); height = encoding.decodeHeight(parentVertices, i); u = Math$1.CesiumMath.clamp((texCoords.x * maxShort) | 0, 0, maxShort); v = Math$1.CesiumMath.clamp((texCoords.y * maxShort) | 0, 0, maxShort); parentHeightBuffer[i] = Math$1.CesiumMath.clamp( (((height - parentMinimumHeight) / (parentMaximumHeight - parentMinimumHeight)) * maxShort) | 0, 0, maxShort ); if (u < threshold) { u = 0; } if (v < threshold) { v = 0; } if (maxShort - u < threshold) { u = maxShort; } if (maxShort - v < threshold) { v = maxShort; } parentUBuffer[i] = u; parentVBuffer[i] = v; if (hasVertexNormals) { const encodedNormal = encoding.getOctEncodedNormal( parentVertices, i, octEncodedNormalScratch ); parentNormalBuffer[n] = encodedNormal.x; parentNormalBuffer[n + 1] = encodedNormal.y; } if ( ((isEastChild && u >= halfMaxShort) || (!isEastChild && u <= halfMaxShort)) && ((isNorthChild && v >= halfMaxShort) || (!isNorthChild && v <= halfMaxShort)) ) { vertexMap[i] = vertexCount; uBuffer.push(u); vBuffer.push(v); heightBuffer.push(parentHeightBuffer[i]); if (hasVertexNormals) { normalBuffer.push(parentNormalBuffer[n]); normalBuffer.push(parentNormalBuffer[n + 1]); } ++vertexCount; } } const triangleVertices = []; triangleVertices.push(new Vertex()); triangleVertices.push(new Vertex()); triangleVertices.push(new Vertex()); const clippedTriangleVertices = []; clippedTriangleVertices.push(new Vertex()); clippedTriangleVertices.push(new Vertex()); clippedTriangleVertices.push(new Vertex()); let clippedIndex; let clipped2; for (i = 0; i < parentIndices.length; i += 3) { const i0 = parentIndices[i]; const i1 = parentIndices[i + 1]; const i2 = parentIndices[i + 2]; const u0 = parentUBuffer[i0]; const u1 = parentUBuffer[i1]; const u2 = parentUBuffer[i2]; triangleVertices[0].initializeIndexed( parentUBuffer, parentVBuffer, parentHeightBuffer, parentNormalBuffer, i0 ); triangleVertices[1].initializeIndexed( parentUBuffer, parentVBuffer, parentHeightBuffer, parentNormalBuffer, i1 ); triangleVertices[2].initializeIndexed( parentUBuffer, parentVBuffer, parentHeightBuffer, parentNormalBuffer, i2 ); // Clip triangle on the east-west boundary. const clipped = Intersections2D$1.clipTriangleAtAxisAlignedThreshold( halfMaxShort, isEastChild, u0, u1, u2, clipScratch ); // Get the first clipped triangle, if any. clippedIndex = 0; if (clippedIndex >= clipped.length) { continue; } clippedIndex = clippedTriangleVertices[0].initializeFromClipResult( clipped, clippedIndex, triangleVertices ); if (clippedIndex >= clipped.length) { continue; } clippedIndex = clippedTriangleVertices[1].initializeFromClipResult( clipped, clippedIndex, triangleVertices ); if (clippedIndex >= clipped.length) { continue; } clippedIndex = clippedTriangleVertices[2].initializeFromClipResult( clipped, clippedIndex, triangleVertices ); // Clip the triangle against the North-south boundary. clipped2 = Intersections2D$1.clipTriangleAtAxisAlignedThreshold( halfMaxShort, isNorthChild, clippedTriangleVertices[0].getV(), clippedTriangleVertices[1].getV(), clippedTriangleVertices[2].getV(), clipScratch2 ); addClippedPolygon( uBuffer, vBuffer, heightBuffer, normalBuffer, indices, vertexMap, clipped2, clippedTriangleVertices, hasVertexNormals ); // If there's another vertex in the original clipped result, // it forms a second triangle. Clip it as well. if (clippedIndex < clipped.length) { clippedTriangleVertices[2].clone(clippedTriangleVertices[1]); clippedTriangleVertices[2].initializeFromClipResult( clipped, clippedIndex, triangleVertices ); clipped2 = Intersections2D$1.clipTriangleAtAxisAlignedThreshold( halfMaxShort, isNorthChild, clippedTriangleVertices[0].getV(), clippedTriangleVertices[1].getV(), clippedTriangleVertices[2].getV(), clipScratch2 ); addClippedPolygon( uBuffer, vBuffer, heightBuffer, normalBuffer, indices, vertexMap, clipped2, clippedTriangleVertices, hasVertexNormals ); } } const uOffset = isEastChild ? -maxShort : 0; const vOffset = isNorthChild ? -maxShort : 0; const westIndices = []; const southIndices = []; const eastIndices = []; const northIndices = []; let minimumHeight = Number.MAX_VALUE; let maximumHeight = -minimumHeight; const cartesianVertices = verticesScratch; cartesianVertices.length = 0; const ellipsoid = Matrix3.Ellipsoid.clone(parameters.ellipsoid); const rectangle = Matrix2.Rectangle.clone(parameters.childRectangle); const north = rectangle.north; const south = rectangle.south; let east = rectangle.east; const west = rectangle.west; if (east < west) { east += Math$1.CesiumMath.TWO_PI; } for (i = 0; i < uBuffer.length; ++i) { u = Math.round(uBuffer[i]); if (u <= minU) { westIndices.push(i); u = 0; } else if (u >= maxU) { eastIndices.push(i); u = maxShort; } else { u = u * 2 + uOffset; } uBuffer[i] = u; v = Math.round(vBuffer[i]); if (v <= minV) { southIndices.push(i); v = 0; } else if (v >= maxV) { northIndices.push(i); v = maxShort; } else { v = v * 2 + vOffset; } vBuffer[i] = v; height = Math$1.CesiumMath.lerp( parentMinimumHeight, parentMaximumHeight, heightBuffer[i] / maxShort ); if (height < minimumHeight) { minimumHeight = height; } if (height > maximumHeight) { maximumHeight = height; } heightBuffer[i] = height; cartographicScratch.longitude = Math$1.CesiumMath.lerp(west, east, u / maxShort); cartographicScratch.latitude = Math$1.CesiumMath.lerp(south, north, v / maxShort); cartographicScratch.height = height; ellipsoid.cartographicToCartesian(cartographicScratch, cartesian3Scratch); cartesianVertices.push(cartesian3Scratch.x); cartesianVertices.push(cartesian3Scratch.y); cartesianVertices.push(cartesian3Scratch.z); } const boundingSphere = Transforms.BoundingSphere.fromVertices( cartesianVertices, Matrix3.Cartesian3.ZERO, 3, boundingSphereScratch ); const orientedBoundingBox = OrientedBoundingBox.OrientedBoundingBox.fromRectangle( rectangle, minimumHeight, maximumHeight, ellipsoid, orientedBoundingBoxScratch ); const occluder = new TerrainEncoding.EllipsoidalOccluder(ellipsoid); const horizonOcclusionPoint = occluder.computeHorizonCullingPointFromVerticesPossiblyUnderEllipsoid( boundingSphere.center, cartesianVertices, 3, boundingSphere.center, minimumHeight, horizonOcclusionPointScratch ); const heightRange = maximumHeight - minimumHeight; const vertices = new Uint16Array( uBuffer.length + vBuffer.length + heightBuffer.length ); for (i = 0; i < uBuffer.length; ++i) { vertices[i] = uBuffer[i]; } let start = uBuffer.length; for (i = 0; i < vBuffer.length; ++i) { vertices[start + i] = vBuffer[i]; } start += vBuffer.length; for (i = 0; i < heightBuffer.length; ++i) { vertices[start + i] = (maxShort * (heightBuffer[i] - minimumHeight)) / heightRange; } const indicesTypedArray = IndexDatatype.IndexDatatype.createTypedArray( uBuffer.length, indices ); let encodedNormals; if (hasVertexNormals) { const normalArray = new Uint8Array(normalBuffer); transferableObjects.push( vertices.buffer, indicesTypedArray.buffer, normalArray.buffer ); encodedNormals = normalArray.buffer; } else { transferableObjects.push(vertices.buffer, indicesTypedArray.buffer); } return { vertices: vertices.buffer, encodedNormals: encodedNormals, indices: indicesTypedArray.buffer, minimumHeight: minimumHeight, maximumHeight: maximumHeight, westIndices: westIndices, southIndices: southIndices, eastIndices: eastIndices, northIndices: northIndices, boundingSphere: boundingSphere, orientedBoundingBox: orientedBoundingBox, horizonOcclusionPoint: horizonOcclusionPoint, }; } function Vertex() { this.vertexBuffer = undefined; this.index = undefined; this.first = undefined; this.second = undefined; this.ratio = undefined; } Vertex.prototype.clone = function (result) { if (!defaultValue.defined(result)) { result = new Vertex(); } result.uBuffer = this.uBuffer; result.vBuffer = this.vBuffer; result.heightBuffer = this.heightBuffer; result.normalBuffer = this.normalBuffer; result.index = this.index; result.first = this.first; result.second = this.second; result.ratio = this.ratio; return result; }; Vertex.prototype.initializeIndexed = function ( uBuffer, vBuffer, heightBuffer, normalBuffer, index ) { this.uBuffer = uBuffer; this.vBuffer = vBuffer; this.heightBuffer = heightBuffer; this.normalBuffer = normalBuffer; this.index = index; this.first = undefined; this.second = undefined; this.ratio = undefined; }; Vertex.prototype.initializeFromClipResult = function ( clipResult, index, vertices ) { let nextIndex = index + 1; if (clipResult[index] !== -1) { vertices[clipResult[index]].clone(this); } else { this.vertexBuffer = undefined; this.index = undefined; this.first = vertices[clipResult[nextIndex]]; ++nextIndex; this.second = vertices[clipResult[nextIndex]]; ++nextIndex; this.ratio = clipResult[nextIndex]; ++nextIndex; } return nextIndex; }; Vertex.prototype.getKey = function () { if (this.isIndexed()) { return this.index; } return JSON.stringify({ first: this.first.getKey(), second: this.second.getKey(), ratio: this.ratio, }); }; Vertex.prototype.isIndexed = function () { return defaultValue.defined(this.index); }; Vertex.prototype.getH = function () { if (defaultValue.defined(this.index)) { return this.heightBuffer[this.index]; } return Math$1.CesiumMath.lerp(this.first.getH(), this.second.getH(), this.ratio); }; Vertex.prototype.getU = function () { if (defaultValue.defined(this.index)) { return this.uBuffer[this.index]; } return Math$1.CesiumMath.lerp(this.first.getU(), this.second.getU(), this.ratio); }; Vertex.prototype.getV = function () { if (defaultValue.defined(this.index)) { return this.vBuffer[this.index]; } return Math$1.CesiumMath.lerp(this.first.getV(), this.second.getV(), this.ratio); }; let encodedScratch = new Matrix2.Cartesian2(); // An upsampled triangle may be clipped twice before it is assigned an index // In this case, we need a buffer to handle the recursion of getNormalX() and getNormalY(). let depth = -1; const cartesianScratch1 = [new Matrix3.Cartesian3(), new Matrix3.Cartesian3()]; const cartesianScratch2 = [new Matrix3.Cartesian3(), new Matrix3.Cartesian3()]; function lerpOctEncodedNormal(vertex, result) { ++depth; let first = cartesianScratch1[depth]; let second = cartesianScratch2[depth]; first = AttributeCompression.AttributeCompression.octDecode( vertex.first.getNormalX(), vertex.first.getNormalY(), first ); second = AttributeCompression.AttributeCompression.octDecode( vertex.second.getNormalX(), vertex.second.getNormalY(), second ); cartesian3Scratch = Matrix3.Cartesian3.lerp( first, second, vertex.ratio, cartesian3Scratch ); Matrix3.Cartesian3.normalize(cartesian3Scratch, cartesian3Scratch); AttributeCompression.AttributeCompression.octEncode(cartesian3Scratch, result); --depth; return result; } Vertex.prototype.getNormalX = function () { if (defaultValue.defined(this.index)) { return this.normalBuffer[this.index * 2]; } encodedScratch = lerpOctEncodedNormal(this, encodedScratch); return encodedScratch.x; }; Vertex.prototype.getNormalY = function () { if (defaultValue.defined(this.index)) { return this.normalBuffer[this.index * 2 + 1]; } encodedScratch = lerpOctEncodedNormal(this, encodedScratch); return encodedScratch.y; }; const polygonVertices = []; polygonVertices.push(new Vertex()); polygonVertices.push(new Vertex()); polygonVertices.push(new Vertex()); polygonVertices.push(new Vertex()); function addClippedPolygon( uBuffer, vBuffer, heightBuffer, normalBuffer, indices, vertexMap, clipped, triangleVertices, hasVertexNormals ) { if (clipped.length === 0) { return; } let numVertices = 0; let clippedIndex = 0; while (clippedIndex < clipped.length) { clippedIndex = polygonVertices[numVertices++].initializeFromClipResult( clipped, clippedIndex, triangleVertices ); } for (let i = 0; i < numVertices; ++i) { const polygonVertex = polygonVertices[i]; if (!polygonVertex.isIndexed()) { const key = polygonVertex.getKey(); if (defaultValue.defined(vertexMap[key])) { polygonVertex.newIndex = vertexMap[key]; } else { const newIndex = uBuffer.length; uBuffer.push(polygonVertex.getU()); vBuffer.push(polygonVertex.getV()); heightBuffer.push(polygonVertex.getH()); if (hasVertexNormals) { normalBuffer.push(polygonVertex.getNormalX()); normalBuffer.push(polygonVertex.getNormalY()); } polygonVertex.newIndex = newIndex; vertexMap[key] = newIndex; } } else { polygonVertex.newIndex = vertexMap[polygonVertex.index]; polygonVertex.uBuffer = uBuffer; polygonVertex.vBuffer = vBuffer; polygonVertex.heightBuffer = heightBuffer; if (hasVertexNormals) { polygonVertex.normalBuffer = normalBuffer; } } } if (numVertices === 3) { // A triangle. indices.push(polygonVertices[0].newIndex); indices.push(polygonVertices[1].newIndex); indices.push(polygonVertices[2].newIndex); } else if (numVertices === 4) { // A quad - two triangles. indices.push(polygonVertices[0].newIndex); indices.push(polygonVertices[1].newIndex); indices.push(polygonVertices[2].newIndex); indices.push(polygonVertices[0].newIndex); indices.push(polygonVertices[2].newIndex); indices.push(polygonVertices[3].newIndex); } } var upsampleQuantizedTerrainMesh$1 = createTaskProcessorWorker(upsampleQuantizedTerrainMesh); return upsampleQuantizedTerrainMesh$1; }));