/**
* @license
* Cesium - https://github.com/CesiumGS/cesium
* Version 1.99
*
* Copyright 2011-2022 Cesium Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Columbus View (Pat. Pend.)
*
* Portions licensed separately.
* See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details.
*/
define(['exports', './Matrix2-f9f1b94b', './Matrix3-ea964448', './EllipsoidTangentPlane-244dda7a', './Math-efde0c7b', './PolylinePipeline-b636012e', './Transforms-ac2d28a9', './defaultValue-135942ca', './Check-40d84a28'], (function (exports, Matrix2, Matrix3, EllipsoidTangentPlane, Math$1, PolylinePipeline, Transforms, defaultValue, Check) { 'use strict';
/**
* Style options for corners.
*
* @demo The {@link https://sandcastle.cesium.com/index.html?src=Corridor.html&label=Geometries|Corridor Demo}
* demonstrates the three corner types, as used by {@link CorridorGraphics}.
*
* @enum {Number}
*/
const CornerType = {
/**
*
*
* Corner has a smooth edge.
* @type {Number}
* @constant
*/
ROUNDED: 0,
/**
*
*
* Corner point is the intersection of adjacent edges.
* @type {Number}
* @constant
*/
MITERED: 1,
/**
*
*
* Corner is clipped.
* @type {Number}
* @constant
*/
BEVELED: 2,
};
var CornerType$1 = Object.freeze(CornerType);
const warnings = {};
/**
* Logs a one time message to the console. Use this function instead of
* console.log
directly since this does not log duplicate messages
* unless it is called from multiple workers.
*
* @function oneTimeWarning
*
* @param {String} identifier The unique identifier for this warning.
* @param {String} [message=identifier] The message to log to the console.
*
* @example
* for(let i=0;i>includeStart('debug', pragmas.debug);
if (!defaultValue.defined(identifier)) {
throw new Check.DeveloperError("identifier is required.");
}
//>>includeEnd('debug');
if (!defaultValue.defined(warnings[identifier])) {
warnings[identifier] = true;
console.warn(defaultValue.defaultValue(message, identifier));
}
}
oneTimeWarning.geometryOutlines =
"Entity geometry outlines are unsupported on terrain. Outlines will be disabled. To enable outlines, disable geometry terrain clamping by explicitly setting height to 0.";
oneTimeWarning.geometryZIndex =
"Entity geometry with zIndex are unsupported when height or extrudedHeight are defined. zIndex will be ignored";
oneTimeWarning.geometryHeightReference =
"Entity corridor, ellipse, polygon or rectangle with heightReference must also have a defined height. heightReference will be ignored";
oneTimeWarning.geometryExtrudedHeightReference =
"Entity corridor, ellipse, polygon or rectangle with extrudedHeightReference must also have a defined extrudedHeight. extrudedHeightReference will be ignored";
const scratch2Array = [new Matrix3.Cartesian3(), new Matrix3.Cartesian3()];
const scratchCartesian1 = new Matrix3.Cartesian3();
const scratchCartesian2 = new Matrix3.Cartesian3();
const scratchCartesian3 = new Matrix3.Cartesian3();
const scratchCartesian4 = new Matrix3.Cartesian3();
const scratchCartesian5 = new Matrix3.Cartesian3();
const scratchCartesian6 = new Matrix3.Cartesian3();
const scratchCartesian7 = new Matrix3.Cartesian3();
const scratchCartesian8 = new Matrix3.Cartesian3();
const scratchCartesian9 = new Matrix3.Cartesian3();
const scratch1 = new Matrix3.Cartesian3();
const scratch2 = new Matrix3.Cartesian3();
/**
* @private
*/
const PolylineVolumeGeometryLibrary = {};
let cartographic = new Matrix3.Cartographic();
function scaleToSurface(positions, ellipsoid) {
const heights = new Array(positions.length);
for (let i = 0; i < positions.length; i++) {
const pos = positions[i];
cartographic = ellipsoid.cartesianToCartographic(pos, cartographic);
heights[i] = cartographic.height;
positions[i] = ellipsoid.scaleToGeodeticSurface(pos, pos);
}
return heights;
}
function subdivideHeights(points, h0, h1, granularity) {
const p0 = points[0];
const p1 = points[1];
const angleBetween = Matrix3.Cartesian3.angleBetween(p0, p1);
const numPoints = Math.ceil(angleBetween / granularity);
const heights = new Array(numPoints);
let i;
if (h0 === h1) {
for (i = 0; i < numPoints; i++) {
heights[i] = h0;
}
heights.push(h1);
return heights;
}
const dHeight = h1 - h0;
const heightPerVertex = dHeight / numPoints;
for (i = 1; i < numPoints; i++) {
const h = h0 + i * heightPerVertex;
heights[i] = h;
}
heights[0] = h0;
heights.push(h1);
return heights;
}
const nextScratch = new Matrix3.Cartesian3();
const prevScratch = new Matrix3.Cartesian3();
function computeRotationAngle(start, end, position, ellipsoid) {
const tangentPlane = new EllipsoidTangentPlane.EllipsoidTangentPlane(position, ellipsoid);
const next = tangentPlane.projectPointOntoPlane(
Matrix3.Cartesian3.add(position, start, nextScratch),
nextScratch
);
const prev = tangentPlane.projectPointOntoPlane(
Matrix3.Cartesian3.add(position, end, prevScratch),
prevScratch
);
const angle = Matrix2.Cartesian2.angleBetween(next, prev);
return prev.x * next.y - prev.y * next.x >= 0.0 ? -angle : angle;
}
const negativeX = new Matrix3.Cartesian3(-1, 0, 0);
let transform = new Matrix2.Matrix4();
const translation = new Matrix2.Matrix4();
let rotationZ = new Matrix3.Matrix3();
const scaleMatrix = Matrix3.Matrix3.IDENTITY.clone();
const westScratch = new Matrix3.Cartesian3();
const finalPosScratch = new Matrix2.Cartesian4();
const heightCartesian = new Matrix3.Cartesian3();
function addPosition(
center,
left,
shape,
finalPositions,
ellipsoid,
height,
xScalar,
repeat
) {
let west = westScratch;
let finalPosition = finalPosScratch;
transform = Transforms.Transforms.eastNorthUpToFixedFrame(center, ellipsoid, transform);
west = Matrix2.Matrix4.multiplyByPointAsVector(transform, negativeX, west);
west = Matrix3.Cartesian3.normalize(west, west);
const angle = computeRotationAngle(west, left, center, ellipsoid);
rotationZ = Matrix3.Matrix3.fromRotationZ(angle, rotationZ);
heightCartesian.z = height;
transform = Matrix2.Matrix4.multiplyTransformation(
transform,
Matrix2.Matrix4.fromRotationTranslation(rotationZ, heightCartesian, translation),
transform
);
const scale = scaleMatrix;
scale[0] = xScalar;
for (let j = 0; j < repeat; j++) {
for (let i = 0; i < shape.length; i += 3) {
finalPosition = Matrix3.Cartesian3.fromArray(shape, i, finalPosition);
finalPosition = Matrix3.Matrix3.multiplyByVector(
scale,
finalPosition,
finalPosition
);
finalPosition = Matrix2.Matrix4.multiplyByPoint(
transform,
finalPosition,
finalPosition
);
finalPositions.push(finalPosition.x, finalPosition.y, finalPosition.z);
}
}
return finalPositions;
}
const centerScratch = new Matrix3.Cartesian3();
function addPositions(
centers,
left,
shape,
finalPositions,
ellipsoid,
heights,
xScalar
) {
for (let i = 0; i < centers.length; i += 3) {
const center = Matrix3.Cartesian3.fromArray(centers, i, centerScratch);
finalPositions = addPosition(
center,
left,
shape,
finalPositions,
ellipsoid,
heights[i / 3],
xScalar,
1
);
}
return finalPositions;
}
function convertShapeTo3DDuplicate(shape2D, boundingRectangle) {
//orientate 2D shape to XZ plane center at (0, 0, 0), duplicate points
const length = shape2D.length;
const shape = new Array(length * 6);
let index = 0;
const xOffset = boundingRectangle.x + boundingRectangle.width / 2;
const yOffset = boundingRectangle.y + boundingRectangle.height / 2;
let point = shape2D[0];
shape[index++] = point.x - xOffset;
shape[index++] = 0.0;
shape[index++] = point.y - yOffset;
for (let i = 1; i < length; i++) {
point = shape2D[i];
const x = point.x - xOffset;
const z = point.y - yOffset;
shape[index++] = x;
shape[index++] = 0.0;
shape[index++] = z;
shape[index++] = x;
shape[index++] = 0.0;
shape[index++] = z;
}
point = shape2D[0];
shape[index++] = point.x - xOffset;
shape[index++] = 0.0;
shape[index++] = point.y - yOffset;
return shape;
}
function convertShapeTo3D(shape2D, boundingRectangle) {
//orientate 2D shape to XZ plane center at (0, 0, 0)
const length = shape2D.length;
const shape = new Array(length * 3);
let index = 0;
const xOffset = boundingRectangle.x + boundingRectangle.width / 2;
const yOffset = boundingRectangle.y + boundingRectangle.height / 2;
for (let i = 0; i < length; i++) {
shape[index++] = shape2D[i].x - xOffset;
shape[index++] = 0;
shape[index++] = shape2D[i].y - yOffset;
}
return shape;
}
const quaterion = new Transforms.Quaternion();
const startPointScratch = new Matrix3.Cartesian3();
const rotMatrix = new Matrix3.Matrix3();
function computeRoundCorner(
pivot,
startPoint,
endPoint,
cornerType,
leftIsOutside,
ellipsoid,
finalPositions,
shape,
height,
duplicatePoints
) {
const angle = Matrix3.Cartesian3.angleBetween(
Matrix3.Cartesian3.subtract(startPoint, pivot, scratch1),
Matrix3.Cartesian3.subtract(endPoint, pivot, scratch2)
);
const granularity =
cornerType === CornerType$1.BEVELED
? 0
: Math.ceil(angle / Math$1.CesiumMath.toRadians(5));
let m;
if (leftIsOutside) {
m = Matrix3.Matrix3.fromQuaternion(
Transforms.Quaternion.fromAxisAngle(
Matrix3.Cartesian3.negate(pivot, scratch1),
angle / (granularity + 1),
quaterion
),
rotMatrix
);
} else {
m = Matrix3.Matrix3.fromQuaternion(
Transforms.Quaternion.fromAxisAngle(pivot, angle / (granularity + 1), quaterion),
rotMatrix
);
}
let left;
let surfacePoint;
startPoint = Matrix3.Cartesian3.clone(startPoint, startPointScratch);
if (granularity > 0) {
const repeat = duplicatePoints ? 2 : 1;
for (let i = 0; i < granularity; i++) {
startPoint = Matrix3.Matrix3.multiplyByVector(m, startPoint, startPoint);
left = Matrix3.Cartesian3.subtract(startPoint, pivot, scratch1);
left = Matrix3.Cartesian3.normalize(left, left);
if (!leftIsOutside) {
left = Matrix3.Cartesian3.negate(left, left);
}
surfacePoint = ellipsoid.scaleToGeodeticSurface(startPoint, scratch2);
finalPositions = addPosition(
surfacePoint,
left,
shape,
finalPositions,
ellipsoid,
height,
1,
repeat
);
}
} else {
left = Matrix3.Cartesian3.subtract(startPoint, pivot, scratch1);
left = Matrix3.Cartesian3.normalize(left, left);
if (!leftIsOutside) {
left = Matrix3.Cartesian3.negate(left, left);
}
surfacePoint = ellipsoid.scaleToGeodeticSurface(startPoint, scratch2);
finalPositions = addPosition(
surfacePoint,
left,
shape,
finalPositions,
ellipsoid,
height,
1,
1
);
endPoint = Matrix3.Cartesian3.clone(endPoint, startPointScratch);
left = Matrix3.Cartesian3.subtract(endPoint, pivot, scratch1);
left = Matrix3.Cartesian3.normalize(left, left);
if (!leftIsOutside) {
left = Matrix3.Cartesian3.negate(left, left);
}
surfacePoint = ellipsoid.scaleToGeodeticSurface(endPoint, scratch2);
finalPositions = addPosition(
surfacePoint,
left,
shape,
finalPositions,
ellipsoid,
height,
1,
1
);
}
return finalPositions;
}
PolylineVolumeGeometryLibrary.removeDuplicatesFromShape = function (
shapePositions
) {
const length = shapePositions.length;
const cleanedPositions = [];
for (let i0 = length - 1, i1 = 0; i1 < length; i0 = i1++) {
const v0 = shapePositions[i0];
const v1 = shapePositions[i1];
if (!Matrix2.Cartesian2.equals(v0, v1)) {
cleanedPositions.push(v1); // Shallow copy!
}
}
return cleanedPositions;
};
PolylineVolumeGeometryLibrary.angleIsGreaterThanPi = function (
forward,
backward,
position,
ellipsoid
) {
const tangentPlane = new EllipsoidTangentPlane.EllipsoidTangentPlane(position, ellipsoid);
const next = tangentPlane.projectPointOntoPlane(
Matrix3.Cartesian3.add(position, forward, nextScratch),
nextScratch
);
const prev = tangentPlane.projectPointOntoPlane(
Matrix3.Cartesian3.add(position, backward, prevScratch),
prevScratch
);
return prev.x * next.y - prev.y * next.x >= 0.0;
};
const scratchForwardProjection = new Matrix3.Cartesian3();
const scratchBackwardProjection = new Matrix3.Cartesian3();
PolylineVolumeGeometryLibrary.computePositions = function (
positions,
shape2D,
boundingRectangle,
geometry,
duplicatePoints
) {
const ellipsoid = geometry._ellipsoid;
const heights = scaleToSurface(positions, ellipsoid);
const granularity = geometry._granularity;
const cornerType = geometry._cornerType;
const shapeForSides = duplicatePoints
? convertShapeTo3DDuplicate(shape2D, boundingRectangle)
: convertShapeTo3D(shape2D, boundingRectangle);
const shapeForEnds = duplicatePoints
? convertShapeTo3D(shape2D, boundingRectangle)
: undefined;
const heightOffset = boundingRectangle.height / 2;
const width = boundingRectangle.width / 2;
let length = positions.length;
let finalPositions = [];
let ends = duplicatePoints ? [] : undefined;
let forward = scratchCartesian1;
let backward = scratchCartesian2;
let cornerDirection = scratchCartesian3;
let surfaceNormal = scratchCartesian4;
let pivot = scratchCartesian5;
let start = scratchCartesian6;
let end = scratchCartesian7;
let left = scratchCartesian8;
let previousPosition = scratchCartesian9;
let position = positions[0];
let nextPosition = positions[1];
surfaceNormal = ellipsoid.geodeticSurfaceNormal(position, surfaceNormal);
forward = Matrix3.Cartesian3.subtract(nextPosition, position, forward);
forward = Matrix3.Cartesian3.normalize(forward, forward);
left = Matrix3.Cartesian3.cross(surfaceNormal, forward, left);
left = Matrix3.Cartesian3.normalize(left, left);
let h0 = heights[0];
let h1 = heights[1];
if (duplicatePoints) {
ends = addPosition(
position,
left,
shapeForEnds,
ends,
ellipsoid,
h0 + heightOffset,
1,
1
);
}
previousPosition = Matrix3.Cartesian3.clone(position, previousPosition);
position = nextPosition;
backward = Matrix3.Cartesian3.negate(forward, backward);
let subdividedHeights;
let subdividedPositions;
for (let i = 1; i < length - 1; i++) {
const repeat = duplicatePoints ? 2 : 1;
nextPosition = positions[i + 1];
if (position.equals(nextPosition)) {
oneTimeWarning(
"Positions are too close and are considered equivalent with rounding error."
);
continue;
}
forward = Matrix3.Cartesian3.subtract(nextPosition, position, forward);
forward = Matrix3.Cartesian3.normalize(forward, forward);
cornerDirection = Matrix3.Cartesian3.add(forward, backward, cornerDirection);
cornerDirection = Matrix3.Cartesian3.normalize(cornerDirection, cornerDirection);
surfaceNormal = ellipsoid.geodeticSurfaceNormal(position, surfaceNormal);
const forwardProjection = Matrix3.Cartesian3.multiplyByScalar(
surfaceNormal,
Matrix3.Cartesian3.dot(forward, surfaceNormal),
scratchForwardProjection
);
Matrix3.Cartesian3.subtract(forward, forwardProjection, forwardProjection);
Matrix3.Cartesian3.normalize(forwardProjection, forwardProjection);
const backwardProjection = Matrix3.Cartesian3.multiplyByScalar(
surfaceNormal,
Matrix3.Cartesian3.dot(backward, surfaceNormal),
scratchBackwardProjection
);
Matrix3.Cartesian3.subtract(backward, backwardProjection, backwardProjection);
Matrix3.Cartesian3.normalize(backwardProjection, backwardProjection);
const doCorner = !Math$1.CesiumMath.equalsEpsilon(
Math.abs(Matrix3.Cartesian3.dot(forwardProjection, backwardProjection)),
1.0,
Math$1.CesiumMath.EPSILON7
);
if (doCorner) {
cornerDirection = Matrix3.Cartesian3.cross(
cornerDirection,
surfaceNormal,
cornerDirection
);
cornerDirection = Matrix3.Cartesian3.cross(
surfaceNormal,
cornerDirection,
cornerDirection
);
cornerDirection = Matrix3.Cartesian3.normalize(cornerDirection, cornerDirection);
const scalar =
1 /
Math.max(
0.25,
Matrix3.Cartesian3.magnitude(
Matrix3.Cartesian3.cross(cornerDirection, backward, scratch1)
)
);
const leftIsOutside = PolylineVolumeGeometryLibrary.angleIsGreaterThanPi(
forward,
backward,
position,
ellipsoid
);
if (leftIsOutside) {
pivot = Matrix3.Cartesian3.add(
position,
Matrix3.Cartesian3.multiplyByScalar(
cornerDirection,
scalar * width,
cornerDirection
),
pivot
);
start = Matrix3.Cartesian3.add(
pivot,
Matrix3.Cartesian3.multiplyByScalar(left, width, start),
start
);
scratch2Array[0] = Matrix3.Cartesian3.clone(previousPosition, scratch2Array[0]);
scratch2Array[1] = Matrix3.Cartesian3.clone(start, scratch2Array[1]);
subdividedHeights = subdivideHeights(
scratch2Array,
h0 + heightOffset,
h1 + heightOffset,
granularity
);
subdividedPositions = PolylinePipeline.PolylinePipeline.generateArc({
positions: scratch2Array,
granularity: granularity,
ellipsoid: ellipsoid,
});
finalPositions = addPositions(
subdividedPositions,
left,
shapeForSides,
finalPositions,
ellipsoid,
subdividedHeights,
1
);
left = Matrix3.Cartesian3.cross(surfaceNormal, forward, left);
left = Matrix3.Cartesian3.normalize(left, left);
end = Matrix3.Cartesian3.add(
pivot,
Matrix3.Cartesian3.multiplyByScalar(left, width, end),
end
);
if (
cornerType === CornerType$1.ROUNDED ||
cornerType === CornerType$1.BEVELED
) {
computeRoundCorner(
pivot,
start,
end,
cornerType,
leftIsOutside,
ellipsoid,
finalPositions,
shapeForSides,
h1 + heightOffset,
duplicatePoints
);
} else {
cornerDirection = Matrix3.Cartesian3.negate(cornerDirection, cornerDirection);
finalPositions = addPosition(
position,
cornerDirection,
shapeForSides,
finalPositions,
ellipsoid,
h1 + heightOffset,
scalar,
repeat
);
}
previousPosition = Matrix3.Cartesian3.clone(end, previousPosition);
} else {
pivot = Matrix3.Cartesian3.add(
position,
Matrix3.Cartesian3.multiplyByScalar(
cornerDirection,
scalar * width,
cornerDirection
),
pivot
);
start = Matrix3.Cartesian3.add(
pivot,
Matrix3.Cartesian3.multiplyByScalar(left, -width, start),
start
);
scratch2Array[0] = Matrix3.Cartesian3.clone(previousPosition, scratch2Array[0]);
scratch2Array[1] = Matrix3.Cartesian3.clone(start, scratch2Array[1]);
subdividedHeights = subdivideHeights(
scratch2Array,
h0 + heightOffset,
h1 + heightOffset,
granularity
);
subdividedPositions = PolylinePipeline.PolylinePipeline.generateArc({
positions: scratch2Array,
granularity: granularity,
ellipsoid: ellipsoid,
});
finalPositions = addPositions(
subdividedPositions,
left,
shapeForSides,
finalPositions,
ellipsoid,
subdividedHeights,
1
);
left = Matrix3.Cartesian3.cross(surfaceNormal, forward, left);
left = Matrix3.Cartesian3.normalize(left, left);
end = Matrix3.Cartesian3.add(
pivot,
Matrix3.Cartesian3.multiplyByScalar(left, -width, end),
end
);
if (
cornerType === CornerType$1.ROUNDED ||
cornerType === CornerType$1.BEVELED
) {
computeRoundCorner(
pivot,
start,
end,
cornerType,
leftIsOutside,
ellipsoid,
finalPositions,
shapeForSides,
h1 + heightOffset,
duplicatePoints
);
} else {
finalPositions = addPosition(
position,
cornerDirection,
shapeForSides,
finalPositions,
ellipsoid,
h1 + heightOffset,
scalar,
repeat
);
}
previousPosition = Matrix3.Cartesian3.clone(end, previousPosition);
}
backward = Matrix3.Cartesian3.negate(forward, backward);
} else {
finalPositions = addPosition(
previousPosition,
left,
shapeForSides,
finalPositions,
ellipsoid,
h0 + heightOffset,
1,
1
);
previousPosition = position;
}
h0 = h1;
h1 = heights[i + 1];
position = nextPosition;
}
scratch2Array[0] = Matrix3.Cartesian3.clone(previousPosition, scratch2Array[0]);
scratch2Array[1] = Matrix3.Cartesian3.clone(position, scratch2Array[1]);
subdividedHeights = subdivideHeights(
scratch2Array,
h0 + heightOffset,
h1 + heightOffset,
granularity
);
subdividedPositions = PolylinePipeline.PolylinePipeline.generateArc({
positions: scratch2Array,
granularity: granularity,
ellipsoid: ellipsoid,
});
finalPositions = addPositions(
subdividedPositions,
left,
shapeForSides,
finalPositions,
ellipsoid,
subdividedHeights,
1
);
if (duplicatePoints) {
ends = addPosition(
position,
left,
shapeForEnds,
ends,
ellipsoid,
h1 + heightOffset,
1,
1
);
}
length = finalPositions.length;
const posLength = duplicatePoints ? length + ends.length : length;
const combinedPositions = new Float64Array(posLength);
combinedPositions.set(finalPositions);
if (duplicatePoints) {
combinedPositions.set(ends, length);
}
return combinedPositions;
};
var PolylineVolumeGeometryLibrary$1 = PolylineVolumeGeometryLibrary;
exports.CornerType = CornerType$1;
exports.PolylineVolumeGeometryLibrary = PolylineVolumeGeometryLibrary$1;
exports.oneTimeWarning = oneTimeWarning;
}));