/**
* @license
* Cesium - https://github.com/CesiumGS/cesium
* Version 1.99
*
* Copyright 2011-2022 Cesium Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Columbus View (Pat. Pend.)
*
* Portions licensed separately.
* See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details.
*/
define(['exports', './Transforms-ac2d28a9', './Matrix3-ea964448', './Check-40d84a28', './defaultValue-135942ca', './Matrix2-f9f1b94b', './AttributeCompression-53c7fda2', './ComponentDatatype-ebdce3ba', './Math-efde0c7b'], (function (exports, Transforms, Matrix3, Check, defaultValue, Matrix2, AttributeCompression, ComponentDatatype, Math$1) { 'use strict';
/**
* Determine whether or not other objects are visible or hidden behind the visible horizon defined by
* an {@link Ellipsoid} and a camera position. The ellipsoid is assumed to be located at the
* origin of the coordinate system. This class uses the algorithm described in the
* {@link https://cesium.com/blog/2013/04/25/Horizon-culling/|Horizon Culling} blog post.
*
* @alias EllipsoidalOccluder
*
* @param {Ellipsoid} ellipsoid The ellipsoid to use as an occluder.
* @param {Cartesian3} [cameraPosition] The coordinate of the viewer/camera. If this parameter is not
* specified, {@link EllipsoidalOccluder#cameraPosition} must be called before
* testing visibility.
*
* @constructor
*
* @example
* // Construct an ellipsoidal occluder with radii 1.0, 1.1, and 0.9.
* const cameraPosition = new Cesium.Cartesian3(5.0, 6.0, 7.0);
* const occluderEllipsoid = new Cesium.Ellipsoid(1.0, 1.1, 0.9);
* const occluder = new Cesium.EllipsoidalOccluder(occluderEllipsoid, cameraPosition);
*
* @private
*/
function EllipsoidalOccluder(ellipsoid, cameraPosition) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object("ellipsoid", ellipsoid);
//>>includeEnd('debug');
this._ellipsoid = ellipsoid;
this._cameraPosition = new Matrix3.Cartesian3();
this._cameraPositionInScaledSpace = new Matrix3.Cartesian3();
this._distanceToLimbInScaledSpaceSquared = 0.0;
// cameraPosition fills in the above values
if (defaultValue.defined(cameraPosition)) {
this.cameraPosition = cameraPosition;
}
}
Object.defineProperties(EllipsoidalOccluder.prototype, {
/**
* Gets the occluding ellipsoid.
* @memberof EllipsoidalOccluder.prototype
* @type {Ellipsoid}
*/
ellipsoid: {
get: function () {
return this._ellipsoid;
},
},
/**
* Gets or sets the position of the camera.
* @memberof EllipsoidalOccluder.prototype
* @type {Cartesian3}
*/
cameraPosition: {
get: function () {
return this._cameraPosition;
},
set: function (cameraPosition) {
// See https://cesium.com/blog/2013/04/25/Horizon-culling/
const ellipsoid = this._ellipsoid;
const cv = ellipsoid.transformPositionToScaledSpace(
cameraPosition,
this._cameraPositionInScaledSpace
);
const vhMagnitudeSquared = Matrix3.Cartesian3.magnitudeSquared(cv) - 1.0;
Matrix3.Cartesian3.clone(cameraPosition, this._cameraPosition);
this._cameraPositionInScaledSpace = cv;
this._distanceToLimbInScaledSpaceSquared = vhMagnitudeSquared;
},
},
});
const scratchCartesian = new Matrix3.Cartesian3();
/**
* Determines whether or not a point, the occludee
, is hidden from view by the occluder.
*
* @param {Cartesian3} occludee The point to test for visibility.
* @returns {Boolean} true
if the occludee is visible; otherwise false
.
*
* @example
* const cameraPosition = new Cesium.Cartesian3(0, 0, 2.5);
* const ellipsoid = new Cesium.Ellipsoid(1.0, 1.1, 0.9);
* const occluder = new Cesium.EllipsoidalOccluder(ellipsoid, cameraPosition);
* const point = new Cesium.Cartesian3(0, -3, -3);
* occluder.isPointVisible(point); //returns true
*/
EllipsoidalOccluder.prototype.isPointVisible = function (occludee) {
const ellipsoid = this._ellipsoid;
const occludeeScaledSpacePosition = ellipsoid.transformPositionToScaledSpace(
occludee,
scratchCartesian
);
return isScaledSpacePointVisible(
occludeeScaledSpacePosition,
this._cameraPositionInScaledSpace,
this._distanceToLimbInScaledSpaceSquared
);
};
/**
* Determines whether or not a point expressed in the ellipsoid scaled space, is hidden from view by the
* occluder. To transform a Cartesian X, Y, Z position in the coordinate system aligned with the ellipsoid
* into the scaled space, call {@link Ellipsoid#transformPositionToScaledSpace}.
*
* @param {Cartesian3} occludeeScaledSpacePosition The point to test for visibility, represented in the scaled space.
* @returns {Boolean} true
if the occludee is visible; otherwise false
.
*
* @example
* const cameraPosition = new Cesium.Cartesian3(0, 0, 2.5);
* const ellipsoid = new Cesium.Ellipsoid(1.0, 1.1, 0.9);
* const occluder = new Cesium.EllipsoidalOccluder(ellipsoid, cameraPosition);
* const point = new Cesium.Cartesian3(0, -3, -3);
* const scaledSpacePoint = ellipsoid.transformPositionToScaledSpace(point);
* occluder.isScaledSpacePointVisible(scaledSpacePoint); //returns true
*/
EllipsoidalOccluder.prototype.isScaledSpacePointVisible = function (
occludeeScaledSpacePosition
) {
return isScaledSpacePointVisible(
occludeeScaledSpacePosition,
this._cameraPositionInScaledSpace,
this._distanceToLimbInScaledSpaceSquared
);
};
const scratchCameraPositionInScaledSpaceShrunk = new Matrix3.Cartesian3();
/**
* Similar to {@link EllipsoidalOccluder#isScaledSpacePointVisible} except tests against an
* ellipsoid that has been shrunk by the minimum height when the minimum height is below
* the ellipsoid. This is intended to be used with points generated by
* {@link EllipsoidalOccluder#computeHorizonCullingPointPossiblyUnderEllipsoid} or
* {@link EllipsoidalOccluder#computeHorizonCullingPointFromVerticesPossiblyUnderEllipsoid}.
*
* @param {Cartesian3} occludeeScaledSpacePosition The point to test for visibility, represented in the scaled space of the possibly-shrunk ellipsoid.
* @returns {Boolean} true
if the occludee is visible; otherwise false
.
*/
EllipsoidalOccluder.prototype.isScaledSpacePointVisiblePossiblyUnderEllipsoid = function (
occludeeScaledSpacePosition,
minimumHeight
) {
const ellipsoid = this._ellipsoid;
let vhMagnitudeSquared;
let cv;
if (
defaultValue.defined(minimumHeight) &&
minimumHeight < 0.0 &&
ellipsoid.minimumRadius > -minimumHeight
) {
// This code is similar to the cameraPosition setter, but unrolled for performance because it will be called a lot.
cv = scratchCameraPositionInScaledSpaceShrunk;
cv.x = this._cameraPosition.x / (ellipsoid.radii.x + minimumHeight);
cv.y = this._cameraPosition.y / (ellipsoid.radii.y + minimumHeight);
cv.z = this._cameraPosition.z / (ellipsoid.radii.z + minimumHeight);
vhMagnitudeSquared = cv.x * cv.x + cv.y * cv.y + cv.z * cv.z - 1.0;
} else {
cv = this._cameraPositionInScaledSpace;
vhMagnitudeSquared = this._distanceToLimbInScaledSpaceSquared;
}
return isScaledSpacePointVisible(
occludeeScaledSpacePosition,
cv,
vhMagnitudeSquared
);
};
/**
* Computes a point that can be used for horizon culling from a list of positions. If the point is below
* the horizon, all of the positions are guaranteed to be below the horizon as well. The returned point
* is expressed in the ellipsoid-scaled space and is suitable for use with
* {@link EllipsoidalOccluder#isScaledSpacePointVisible}.
*
* @param {Cartesian3} directionToPoint The direction that the computed point will lie along.
* A reasonable direction to use is the direction from the center of the ellipsoid to
* the center of the bounding sphere computed from the positions. The direction need not
* be normalized.
* @param {Cartesian3[]} positions The positions from which to compute the horizon culling point. The positions
* must be expressed in a reference frame centered at the ellipsoid and aligned with the
* ellipsoid's axes.
* @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance.
* @returns {Cartesian3} The computed horizon culling point, expressed in the ellipsoid-scaled space.
*/
EllipsoidalOccluder.prototype.computeHorizonCullingPoint = function (
directionToPoint,
positions,
result
) {
return computeHorizonCullingPointFromPositions(
this._ellipsoid,
directionToPoint,
positions,
result
);
};
const scratchEllipsoidShrunk = Matrix3.Ellipsoid.clone(Matrix3.Ellipsoid.UNIT_SPHERE);
/**
* Similar to {@link EllipsoidalOccluder#computeHorizonCullingPoint} except computes the culling
* point relative to an ellipsoid that has been shrunk by the minimum height when the minimum height is below
* the ellipsoid. The returned point is expressed in the possibly-shrunk ellipsoid-scaled space and is suitable
* for use with {@link EllipsoidalOccluder#isScaledSpacePointVisiblePossiblyUnderEllipsoid}.
*
* @param {Cartesian3} directionToPoint The direction that the computed point will lie along.
* A reasonable direction to use is the direction from the center of the ellipsoid to
* the center of the bounding sphere computed from the positions. The direction need not
* be normalized.
* @param {Cartesian3[]} positions The positions from which to compute the horizon culling point. The positions
* must be expressed in a reference frame centered at the ellipsoid and aligned with the
* ellipsoid's axes.
* @param {Number} [minimumHeight] The minimum height of all positions. If this value is undefined, all positions are assumed to be above the ellipsoid.
* @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance.
* @returns {Cartesian3} The computed horizon culling point, expressed in the possibly-shrunk ellipsoid-scaled space.
*/
EllipsoidalOccluder.prototype.computeHorizonCullingPointPossiblyUnderEllipsoid = function (
directionToPoint,
positions,
minimumHeight,
result
) {
const possiblyShrunkEllipsoid = getPossiblyShrunkEllipsoid(
this._ellipsoid,
minimumHeight,
scratchEllipsoidShrunk
);
return computeHorizonCullingPointFromPositions(
possiblyShrunkEllipsoid,
directionToPoint,
positions,
result
);
};
/**
* Computes a point that can be used for horizon culling from a list of positions. If the point is below
* the horizon, all of the positions are guaranteed to be below the horizon as well. The returned point
* is expressed in the ellipsoid-scaled space and is suitable for use with
* {@link EllipsoidalOccluder#isScaledSpacePointVisible}.
*
* @param {Cartesian3} directionToPoint The direction that the computed point will lie along.
* A reasonable direction to use is the direction from the center of the ellipsoid to
* the center of the bounding sphere computed from the positions. The direction need not
* be normalized.
* @param {Number[]} vertices The vertices from which to compute the horizon culling point. The positions
* must be expressed in a reference frame centered at the ellipsoid and aligned with the
* ellipsoid's axes.
* @param {Number} [stride=3]
* @param {Cartesian3} [center=Cartesian3.ZERO]
* @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance.
* @returns {Cartesian3} The computed horizon culling point, expressed in the ellipsoid-scaled space.
*/
EllipsoidalOccluder.prototype.computeHorizonCullingPointFromVertices = function (
directionToPoint,
vertices,
stride,
center,
result
) {
return computeHorizonCullingPointFromVertices(
this._ellipsoid,
directionToPoint,
vertices,
stride,
center,
result
);
};
/**
* Similar to {@link EllipsoidalOccluder#computeHorizonCullingPointFromVertices} except computes the culling
* point relative to an ellipsoid that has been shrunk by the minimum height when the minimum height is below
* the ellipsoid. The returned point is expressed in the possibly-shrunk ellipsoid-scaled space and is suitable
* for use with {@link EllipsoidalOccluder#isScaledSpacePointVisiblePossiblyUnderEllipsoid}.
*
* @param {Cartesian3} directionToPoint The direction that the computed point will lie along.
* A reasonable direction to use is the direction from the center of the ellipsoid to
* the center of the bounding sphere computed from the positions. The direction need not
* be normalized.
* @param {Number[]} vertices The vertices from which to compute the horizon culling point. The positions
* must be expressed in a reference frame centered at the ellipsoid and aligned with the
* ellipsoid's axes.
* @param {Number} [stride=3]
* @param {Cartesian3} [center=Cartesian3.ZERO]
* @param {Number} [minimumHeight] The minimum height of all vertices. If this value is undefined, all vertices are assumed to be above the ellipsoid.
* @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance.
* @returns {Cartesian3} The computed horizon culling point, expressed in the possibly-shrunk ellipsoid-scaled space.
*/
EllipsoidalOccluder.prototype.computeHorizonCullingPointFromVerticesPossiblyUnderEllipsoid = function (
directionToPoint,
vertices,
stride,
center,
minimumHeight,
result
) {
const possiblyShrunkEllipsoid = getPossiblyShrunkEllipsoid(
this._ellipsoid,
minimumHeight,
scratchEllipsoidShrunk
);
return computeHorizonCullingPointFromVertices(
possiblyShrunkEllipsoid,
directionToPoint,
vertices,
stride,
center,
result
);
};
const subsampleScratch = [];
/**
* Computes a point that can be used for horizon culling of a rectangle. If the point is below
* the horizon, the ellipsoid-conforming rectangle is guaranteed to be below the horizon as well.
* The returned point is expressed in the ellipsoid-scaled space and is suitable for use with
* {@link EllipsoidalOccluder#isScaledSpacePointVisible}.
*
* @param {Rectangle} rectangle The rectangle for which to compute the horizon culling point.
* @param {Ellipsoid} ellipsoid The ellipsoid on which the rectangle is defined. This may be different from
* the ellipsoid used by this instance for occlusion testing.
* @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance.
* @returns {Cartesian3} The computed horizon culling point, expressed in the ellipsoid-scaled space.
*/
EllipsoidalOccluder.prototype.computeHorizonCullingPointFromRectangle = function (
rectangle,
ellipsoid,
result
) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object("rectangle", rectangle);
//>>includeEnd('debug');
const positions = Matrix2.Rectangle.subsample(
rectangle,
ellipsoid,
0.0,
subsampleScratch
);
const bs = Transforms.BoundingSphere.fromPoints(positions);
// If the bounding sphere center is too close to the center of the occluder, it doesn't make
// sense to try to horizon cull it.
if (Matrix3.Cartesian3.magnitude(bs.center) < 0.1 * ellipsoid.minimumRadius) {
return undefined;
}
return this.computeHorizonCullingPoint(bs.center, positions, result);
};
const scratchEllipsoidShrunkRadii = new Matrix3.Cartesian3();
function getPossiblyShrunkEllipsoid(ellipsoid, minimumHeight, result) {
if (
defaultValue.defined(minimumHeight) &&
minimumHeight < 0.0 &&
ellipsoid.minimumRadius > -minimumHeight
) {
const ellipsoidShrunkRadii = Matrix3.Cartesian3.fromElements(
ellipsoid.radii.x + minimumHeight,
ellipsoid.radii.y + minimumHeight,
ellipsoid.radii.z + minimumHeight,
scratchEllipsoidShrunkRadii
);
ellipsoid = Matrix3.Ellipsoid.fromCartesian3(ellipsoidShrunkRadii, result);
}
return ellipsoid;
}
function computeHorizonCullingPointFromPositions(
ellipsoid,
directionToPoint,
positions,
result
) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object("directionToPoint", directionToPoint);
Check.Check.defined("positions", positions);
//>>includeEnd('debug');
if (!defaultValue.defined(result)) {
result = new Matrix3.Cartesian3();
}
const scaledSpaceDirectionToPoint = computeScaledSpaceDirectionToPoint(
ellipsoid,
directionToPoint
);
let resultMagnitude = 0.0;
for (let i = 0, len = positions.length; i < len; ++i) {
const position = positions[i];
const candidateMagnitude = computeMagnitude(
ellipsoid,
position,
scaledSpaceDirectionToPoint
);
if (candidateMagnitude < 0.0) {
// all points should face the same direction, but this one doesn't, so return undefined
return undefined;
}
resultMagnitude = Math.max(resultMagnitude, candidateMagnitude);
}
return magnitudeToPoint(scaledSpaceDirectionToPoint, resultMagnitude, result);
}
const positionScratch = new Matrix3.Cartesian3();
function computeHorizonCullingPointFromVertices(
ellipsoid,
directionToPoint,
vertices,
stride,
center,
result
) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object("directionToPoint", directionToPoint);
Check.Check.defined("vertices", vertices);
Check.Check.typeOf.number("stride", stride);
//>>includeEnd('debug');
if (!defaultValue.defined(result)) {
result = new Matrix3.Cartesian3();
}
stride = defaultValue.defaultValue(stride, 3);
center = defaultValue.defaultValue(center, Matrix3.Cartesian3.ZERO);
const scaledSpaceDirectionToPoint = computeScaledSpaceDirectionToPoint(
ellipsoid,
directionToPoint
);
let resultMagnitude = 0.0;
for (let i = 0, len = vertices.length; i < len; i += stride) {
positionScratch.x = vertices[i] + center.x;
positionScratch.y = vertices[i + 1] + center.y;
positionScratch.z = vertices[i + 2] + center.z;
const candidateMagnitude = computeMagnitude(
ellipsoid,
positionScratch,
scaledSpaceDirectionToPoint
);
if (candidateMagnitude < 0.0) {
// all points should face the same direction, but this one doesn't, so return undefined
return undefined;
}
resultMagnitude = Math.max(resultMagnitude, candidateMagnitude);
}
return magnitudeToPoint(scaledSpaceDirectionToPoint, resultMagnitude, result);
}
function isScaledSpacePointVisible(
occludeeScaledSpacePosition,
cameraPositionInScaledSpace,
distanceToLimbInScaledSpaceSquared
) {
// See https://cesium.com/blog/2013/04/25/Horizon-culling/
const cv = cameraPositionInScaledSpace;
const vhMagnitudeSquared = distanceToLimbInScaledSpaceSquared;
const vt = Matrix3.Cartesian3.subtract(
occludeeScaledSpacePosition,
cv,
scratchCartesian
);
const vtDotVc = -Matrix3.Cartesian3.dot(vt, cv);
// If vhMagnitudeSquared < 0 then we are below the surface of the ellipsoid and
// in this case, set the culling plane to be on V.
const isOccluded =
vhMagnitudeSquared < 0
? vtDotVc > 0
: vtDotVc > vhMagnitudeSquared &&
(vtDotVc * vtDotVc) / Matrix3.Cartesian3.magnitudeSquared(vt) >
vhMagnitudeSquared;
return !isOccluded;
}
const scaledSpaceScratch = new Matrix3.Cartesian3();
const directionScratch = new Matrix3.Cartesian3();
function computeMagnitude(ellipsoid, position, scaledSpaceDirectionToPoint) {
const scaledSpacePosition = ellipsoid.transformPositionToScaledSpace(
position,
scaledSpaceScratch
);
let magnitudeSquared = Matrix3.Cartesian3.magnitudeSquared(scaledSpacePosition);
let magnitude = Math.sqrt(magnitudeSquared);
const direction = Matrix3.Cartesian3.divideByScalar(
scaledSpacePosition,
magnitude,
directionScratch
);
// For the purpose of this computation, points below the ellipsoid are consider to be on it instead.
magnitudeSquared = Math.max(1.0, magnitudeSquared);
magnitude = Math.max(1.0, magnitude);
const cosAlpha = Matrix3.Cartesian3.dot(direction, scaledSpaceDirectionToPoint);
const sinAlpha = Matrix3.Cartesian3.magnitude(
Matrix3.Cartesian3.cross(direction, scaledSpaceDirectionToPoint, direction)
);
const cosBeta = 1.0 / magnitude;
const sinBeta = Math.sqrt(magnitudeSquared - 1.0) * cosBeta;
return 1.0 / (cosAlpha * cosBeta - sinAlpha * sinBeta);
}
function magnitudeToPoint(
scaledSpaceDirectionToPoint,
resultMagnitude,
result
) {
// The horizon culling point is undefined if there were no positions from which to compute it,
// the directionToPoint is pointing opposite all of the positions, or if we computed NaN or infinity.
if (
resultMagnitude <= 0.0 ||
resultMagnitude === 1.0 / 0.0 ||
resultMagnitude !== resultMagnitude
) {
return undefined;
}
return Matrix3.Cartesian3.multiplyByScalar(
scaledSpaceDirectionToPoint,
resultMagnitude,
result
);
}
const directionToPointScratch = new Matrix3.Cartesian3();
function computeScaledSpaceDirectionToPoint(ellipsoid, directionToPoint) {
if (Matrix3.Cartesian3.equals(directionToPoint, Matrix3.Cartesian3.ZERO)) {
return directionToPoint;
}
ellipsoid.transformPositionToScaledSpace(
directionToPoint,
directionToPointScratch
);
return Matrix3.Cartesian3.normalize(directionToPointScratch, directionToPointScratch);
}
/**
* @private
*/
const TerrainExaggeration = {};
/**
* Scales a height relative to an offset.
*
* @param {Number} height The height.
* @param {Number} scale A scalar used to exaggerate the terrain. If the value is 1.0 there will be no effect.
* @param {Number} relativeHeight The height relative to which terrain is exaggerated. If the value is 0.0 terrain will be exaggerated relative to the ellipsoid surface.
*/
TerrainExaggeration.getHeight = function (height, scale, relativeHeight) {
return (height - relativeHeight) * scale + relativeHeight;
};
const scratchCartographic = new Matrix3.Cartesian3();
/**
* Scales a position by exaggeration.
*/
TerrainExaggeration.getPosition = function (
position,
ellipsoid,
terrainExaggeration,
terrainExaggerationRelativeHeight,
result
) {
const cartographic = ellipsoid.cartesianToCartographic(
position,
scratchCartographic
);
const newHeight = TerrainExaggeration.getHeight(
cartographic.height,
terrainExaggeration,
terrainExaggerationRelativeHeight
);
return Matrix3.Cartesian3.fromRadians(
cartographic.longitude,
cartographic.latitude,
newHeight,
ellipsoid,
result
);
};
var TerrainExaggeration$1 = TerrainExaggeration;
/**
* This enumerated type is used to determine how the vertices of the terrain mesh are compressed.
*
* @enum {Number}
*
* @private
*/
const TerrainQuantization = {
/**
* The vertices are not compressed.
*
* @type {Number}
* @constant
*/
NONE: 0,
/**
* The vertices are compressed to 12 bits.
*
* @type {Number}
* @constant
*/
BITS12: 1,
};
var TerrainQuantization$1 = Object.freeze(TerrainQuantization);
const cartesian3Scratch = new Matrix3.Cartesian3();
const cartesian3DimScratch = new Matrix3.Cartesian3();
const cartesian2Scratch = new Matrix2.Cartesian2();
const matrix4Scratch = new Matrix2.Matrix4();
const matrix4Scratch2 = new Matrix2.Matrix4();
const SHIFT_LEFT_12 = Math.pow(2.0, 12.0);
/**
* Data used to quantize and pack the terrain mesh. The position can be unpacked for picking and all attributes
* are unpacked in the vertex shader.
*
* @alias TerrainEncoding
* @constructor
*
* @param {Cartesian3} center The center point of the vertices.
* @param {AxisAlignedBoundingBox} axisAlignedBoundingBox The bounds of the tile in the east-north-up coordinates at the tiles center.
* @param {Number} minimumHeight The minimum height.
* @param {Number} maximumHeight The maximum height.
* @param {Matrix4} fromENU The east-north-up to fixed frame matrix at the center of the terrain mesh.
* @param {Boolean} hasVertexNormals If the mesh has vertex normals.
* @param {Boolean} [hasWebMercatorT=false] true if the terrain data includes a Web Mercator texture coordinate; otherwise, false.
* @param {Boolean} [hasGeodeticSurfaceNormals=false] true if the terrain data includes geodetic surface normals; otherwise, false.
* @param {Number} [exaggeration=1.0] A scalar used to exaggerate terrain.
* @param {Number} [exaggerationRelativeHeight=0.0] The relative height from which terrain is exaggerated.
*
* @private
*/
function TerrainEncoding(
center,
axisAlignedBoundingBox,
minimumHeight,
maximumHeight,
fromENU,
hasVertexNormals,
hasWebMercatorT,
hasGeodeticSurfaceNormals,
exaggeration,
exaggerationRelativeHeight
) {
let quantization = TerrainQuantization$1.NONE;
let toENU;
let matrix;
if (
defaultValue.defined(axisAlignedBoundingBox) &&
defaultValue.defined(minimumHeight) &&
defaultValue.defined(maximumHeight) &&
defaultValue.defined(fromENU)
) {
const minimum = axisAlignedBoundingBox.minimum;
const maximum = axisAlignedBoundingBox.maximum;
const dimensions = Matrix3.Cartesian3.subtract(
maximum,
minimum,
cartesian3DimScratch
);
const hDim = maximumHeight - minimumHeight;
const maxDim = Math.max(Matrix3.Cartesian3.maximumComponent(dimensions), hDim);
if (maxDim < SHIFT_LEFT_12 - 1.0) {
quantization = TerrainQuantization$1.BITS12;
} else {
quantization = TerrainQuantization$1.NONE;
}
toENU = Matrix2.Matrix4.inverseTransformation(fromENU, new Matrix2.Matrix4());
const translation = Matrix3.Cartesian3.negate(minimum, cartesian3Scratch);
Matrix2.Matrix4.multiply(
Matrix2.Matrix4.fromTranslation(translation, matrix4Scratch),
toENU,
toENU
);
const scale = cartesian3Scratch;
scale.x = 1.0 / dimensions.x;
scale.y = 1.0 / dimensions.y;
scale.z = 1.0 / dimensions.z;
Matrix2.Matrix4.multiply(Matrix2.Matrix4.fromScale(scale, matrix4Scratch), toENU, toENU);
matrix = Matrix2.Matrix4.clone(fromENU);
Matrix2.Matrix4.setTranslation(matrix, Matrix3.Cartesian3.ZERO, matrix);
fromENU = Matrix2.Matrix4.clone(fromENU, new Matrix2.Matrix4());
const translationMatrix = Matrix2.Matrix4.fromTranslation(minimum, matrix4Scratch);
const scaleMatrix = Matrix2.Matrix4.fromScale(dimensions, matrix4Scratch2);
const st = Matrix2.Matrix4.multiply(translationMatrix, scaleMatrix, matrix4Scratch);
Matrix2.Matrix4.multiply(fromENU, st, fromENU);
Matrix2.Matrix4.multiply(matrix, st, matrix);
}
/**
* How the vertices of the mesh were compressed.
* @type {TerrainQuantization}
*/
this.quantization = quantization;
/**
* The minimum height of the tile including the skirts.
* @type {Number}
*/
this.minimumHeight = minimumHeight;
/**
* The maximum height of the tile.
* @type {Number}
*/
this.maximumHeight = maximumHeight;
/**
* The center of the tile.
* @type {Cartesian3}
*/
this.center = Matrix3.Cartesian3.clone(center);
/**
* A matrix that takes a vertex from the tile, transforms it to east-north-up at the center and scales
* it so each component is in the [0, 1] range.
* @type {Matrix4}
*/
this.toScaledENU = toENU;
/**
* A matrix that restores a vertex transformed with toScaledENU back to the earth fixed reference frame
* @type {Matrix4}
*/
this.fromScaledENU = fromENU;
/**
* The matrix used to decompress the terrain vertices in the shader for RTE rendering.
* @type {Matrix4}
*/
this.matrix = matrix;
/**
* The terrain mesh contains normals.
* @type {Boolean}
*/
this.hasVertexNormals = hasVertexNormals;
/**
* The terrain mesh contains a vertical texture coordinate following the Web Mercator projection.
* @type {Boolean}
*/
this.hasWebMercatorT = defaultValue.defaultValue(hasWebMercatorT, false);
/**
* The terrain mesh contains geodetic surface normals, used for terrain exaggeration.
* @type {Boolean}
*/
this.hasGeodeticSurfaceNormals = defaultValue.defaultValue(
hasGeodeticSurfaceNormals,
false
);
/**
* A scalar used to exaggerate terrain.
* @type {Number}
*/
this.exaggeration = defaultValue.defaultValue(exaggeration, 1.0);
/**
* The relative height from which terrain is exaggerated.
*/
this.exaggerationRelativeHeight = defaultValue.defaultValue(
exaggerationRelativeHeight,
0.0
);
/**
* The number of components in each vertex. This value can differ with different quantizations.
* @type {Number}
*/
this.stride = 0;
this._offsetGeodeticSurfaceNormal = 0;
this._offsetVertexNormal = 0;
// Calculate the stride and offsets declared above
this._calculateStrideAndOffsets();
}
TerrainEncoding.prototype.encode = function (
vertexBuffer,
bufferIndex,
position,
uv,
height,
normalToPack,
webMercatorT,
geodeticSurfaceNormal
) {
const u = uv.x;
const v = uv.y;
if (this.quantization === TerrainQuantization$1.BITS12) {
position = Matrix2.Matrix4.multiplyByPoint(
this.toScaledENU,
position,
cartesian3Scratch
);
position.x = Math$1.CesiumMath.clamp(position.x, 0.0, 1.0);
position.y = Math$1.CesiumMath.clamp(position.y, 0.0, 1.0);
position.z = Math$1.CesiumMath.clamp(position.z, 0.0, 1.0);
const hDim = this.maximumHeight - this.minimumHeight;
const h = Math$1.CesiumMath.clamp((height - this.minimumHeight) / hDim, 0.0, 1.0);
Matrix2.Cartesian2.fromElements(position.x, position.y, cartesian2Scratch);
const compressed0 = AttributeCompression.AttributeCompression.compressTextureCoordinates(
cartesian2Scratch
);
Matrix2.Cartesian2.fromElements(position.z, h, cartesian2Scratch);
const compressed1 = AttributeCompression.AttributeCompression.compressTextureCoordinates(
cartesian2Scratch
);
Matrix2.Cartesian2.fromElements(u, v, cartesian2Scratch);
const compressed2 = AttributeCompression.AttributeCompression.compressTextureCoordinates(
cartesian2Scratch
);
vertexBuffer[bufferIndex++] = compressed0;
vertexBuffer[bufferIndex++] = compressed1;
vertexBuffer[bufferIndex++] = compressed2;
if (this.hasWebMercatorT) {
Matrix2.Cartesian2.fromElements(webMercatorT, 0.0, cartesian2Scratch);
const compressed3 = AttributeCompression.AttributeCompression.compressTextureCoordinates(
cartesian2Scratch
);
vertexBuffer[bufferIndex++] = compressed3;
}
} else {
Matrix3.Cartesian3.subtract(position, this.center, cartesian3Scratch);
vertexBuffer[bufferIndex++] = cartesian3Scratch.x;
vertexBuffer[bufferIndex++] = cartesian3Scratch.y;
vertexBuffer[bufferIndex++] = cartesian3Scratch.z;
vertexBuffer[bufferIndex++] = height;
vertexBuffer[bufferIndex++] = u;
vertexBuffer[bufferIndex++] = v;
if (this.hasWebMercatorT) {
vertexBuffer[bufferIndex++] = webMercatorT;
}
}
if (this.hasVertexNormals) {
vertexBuffer[bufferIndex++] = AttributeCompression.AttributeCompression.octPackFloat(
normalToPack
);
}
if (this.hasGeodeticSurfaceNormals) {
vertexBuffer[bufferIndex++] = geodeticSurfaceNormal.x;
vertexBuffer[bufferIndex++] = geodeticSurfaceNormal.y;
vertexBuffer[bufferIndex++] = geodeticSurfaceNormal.z;
}
return bufferIndex;
};
const scratchPosition = new Matrix3.Cartesian3();
const scratchGeodeticSurfaceNormal = new Matrix3.Cartesian3();
TerrainEncoding.prototype.addGeodeticSurfaceNormals = function (
oldBuffer,
newBuffer,
ellipsoid
) {
if (this.hasGeodeticSurfaceNormals) {
return;
}
const oldStride = this.stride;
const vertexCount = oldBuffer.length / oldStride;
this.hasGeodeticSurfaceNormals = true;
this._calculateStrideAndOffsets();
const newStride = this.stride;
for (let index = 0; index < vertexCount; index++) {
for (let offset = 0; offset < oldStride; offset++) {
const oldIndex = index * oldStride + offset;
const newIndex = index * newStride + offset;
newBuffer[newIndex] = oldBuffer[oldIndex];
}
const position = this.decodePosition(newBuffer, index, scratchPosition);
const geodeticSurfaceNormal = ellipsoid.geodeticSurfaceNormal(
position,
scratchGeodeticSurfaceNormal
);
const bufferIndex = index * newStride + this._offsetGeodeticSurfaceNormal;
newBuffer[bufferIndex] = geodeticSurfaceNormal.x;
newBuffer[bufferIndex + 1] = geodeticSurfaceNormal.y;
newBuffer[bufferIndex + 2] = geodeticSurfaceNormal.z;
}
};
TerrainEncoding.prototype.removeGeodeticSurfaceNormals = function (
oldBuffer,
newBuffer
) {
if (!this.hasGeodeticSurfaceNormals) {
return;
}
const oldStride = this.stride;
const vertexCount = oldBuffer.length / oldStride;
this.hasGeodeticSurfaceNormals = false;
this._calculateStrideAndOffsets();
const newStride = this.stride;
for (let index = 0; index < vertexCount; index++) {
for (let offset = 0; offset < newStride; offset++) {
const oldIndex = index * oldStride + offset;
const newIndex = index * newStride + offset;
newBuffer[newIndex] = oldBuffer[oldIndex];
}
}
};
TerrainEncoding.prototype.decodePosition = function (buffer, index, result) {
if (!defaultValue.defined(result)) {
result = new Matrix3.Cartesian3();
}
index *= this.stride;
if (this.quantization === TerrainQuantization$1.BITS12) {
const xy = AttributeCompression.AttributeCompression.decompressTextureCoordinates(
buffer[index],
cartesian2Scratch
);
result.x = xy.x;
result.y = xy.y;
const zh = AttributeCompression.AttributeCompression.decompressTextureCoordinates(
buffer[index + 1],
cartesian2Scratch
);
result.z = zh.x;
return Matrix2.Matrix4.multiplyByPoint(this.fromScaledENU, result, result);
}
result.x = buffer[index];
result.y = buffer[index + 1];
result.z = buffer[index + 2];
return Matrix3.Cartesian3.add(result, this.center, result);
};
TerrainEncoding.prototype.getExaggeratedPosition = function (
buffer,
index,
result
) {
result = this.decodePosition(buffer, index, result);
const exaggeration = this.exaggeration;
const exaggerationRelativeHeight = this.exaggerationRelativeHeight;
const hasExaggeration = exaggeration !== 1.0;
if (hasExaggeration && this.hasGeodeticSurfaceNormals) {
const geodeticSurfaceNormal = this.decodeGeodeticSurfaceNormal(
buffer,
index,
scratchGeodeticSurfaceNormal
);
const rawHeight = this.decodeHeight(buffer, index);
const heightDifference =
TerrainExaggeration$1.getHeight(
rawHeight,
exaggeration,
exaggerationRelativeHeight
) - rawHeight;
// some math is unrolled for better performance
result.x += geodeticSurfaceNormal.x * heightDifference;
result.y += geodeticSurfaceNormal.y * heightDifference;
result.z += geodeticSurfaceNormal.z * heightDifference;
}
return result;
};
TerrainEncoding.prototype.decodeTextureCoordinates = function (
buffer,
index,
result
) {
if (!defaultValue.defined(result)) {
result = new Matrix2.Cartesian2();
}
index *= this.stride;
if (this.quantization === TerrainQuantization$1.BITS12) {
return AttributeCompression.AttributeCompression.decompressTextureCoordinates(
buffer[index + 2],
result
);
}
return Matrix2.Cartesian2.fromElements(buffer[index + 4], buffer[index + 5], result);
};
TerrainEncoding.prototype.decodeHeight = function (buffer, index) {
index *= this.stride;
if (this.quantization === TerrainQuantization$1.BITS12) {
const zh = AttributeCompression.AttributeCompression.decompressTextureCoordinates(
buffer[index + 1],
cartesian2Scratch
);
return (
zh.y * (this.maximumHeight - this.minimumHeight) + this.minimumHeight
);
}
return buffer[index + 3];
};
TerrainEncoding.prototype.decodeWebMercatorT = function (buffer, index) {
index *= this.stride;
if (this.quantization === TerrainQuantization$1.BITS12) {
return AttributeCompression.AttributeCompression.decompressTextureCoordinates(
buffer[index + 3],
cartesian2Scratch
).x;
}
return buffer[index + 6];
};
TerrainEncoding.prototype.getOctEncodedNormal = function (
buffer,
index,
result
) {
index = index * this.stride + this._offsetVertexNormal;
const temp = buffer[index] / 256.0;
const x = Math.floor(temp);
const y = (temp - x) * 256.0;
return Matrix2.Cartesian2.fromElements(x, y, result);
};
TerrainEncoding.prototype.decodeGeodeticSurfaceNormal = function (
buffer,
index,
result
) {
index = index * this.stride + this._offsetGeodeticSurfaceNormal;
result.x = buffer[index];
result.y = buffer[index + 1];
result.z = buffer[index + 2];
return result;
};
TerrainEncoding.prototype._calculateStrideAndOffsets = function () {
let vertexStride = 0;
switch (this.quantization) {
case TerrainQuantization$1.BITS12:
vertexStride += 3;
break;
default:
vertexStride += 6;
}
if (this.hasWebMercatorT) {
vertexStride += 1;
}
if (this.hasVertexNormals) {
this._offsetVertexNormal = vertexStride;
vertexStride += 1;
}
if (this.hasGeodeticSurfaceNormals) {
this._offsetGeodeticSurfaceNormal = vertexStride;
vertexStride += 3;
}
this.stride = vertexStride;
};
const attributesIndicesNone = {
position3DAndHeight: 0,
textureCoordAndEncodedNormals: 1,
geodeticSurfaceNormal: 2,
};
const attributesIndicesBits12 = {
compressed0: 0,
compressed1: 1,
geodeticSurfaceNormal: 2,
};
TerrainEncoding.prototype.getAttributes = function (buffer) {
const datatype = ComponentDatatype.ComponentDatatype.FLOAT;
const sizeInBytes = ComponentDatatype.ComponentDatatype.getSizeInBytes(datatype);
const strideInBytes = this.stride * sizeInBytes;
let offsetInBytes = 0;
const attributes = [];
function addAttribute(index, componentsPerAttribute) {
attributes.push({
index: index,
vertexBuffer: buffer,
componentDatatype: datatype,
componentsPerAttribute: componentsPerAttribute,
offsetInBytes: offsetInBytes,
strideInBytes: strideInBytes,
});
offsetInBytes += componentsPerAttribute * sizeInBytes;
}
if (this.quantization === TerrainQuantization$1.NONE) {
addAttribute(attributesIndicesNone.position3DAndHeight, 4);
let componentsTexCoordAndNormals = 2;
componentsTexCoordAndNormals += this.hasWebMercatorT ? 1 : 0;
componentsTexCoordAndNormals += this.hasVertexNormals ? 1 : 0;
addAttribute(
attributesIndicesNone.textureCoordAndEncodedNormals,
componentsTexCoordAndNormals
);
if (this.hasGeodeticSurfaceNormals) {
addAttribute(attributesIndicesNone.geodeticSurfaceNormal, 3);
}
} else {
// When there is no webMercatorT or vertex normals, the attribute only needs 3 components: x/y, z/h, u/v.
// WebMercatorT and vertex normals each take up one component, so if only one of them is present the first
// attribute gets a 4th component. If both are present, we need an additional attribute that has 1 component.
const usingAttribute0Component4 =
this.hasWebMercatorT || this.hasVertexNormals;
const usingAttribute1Component1 =
this.hasWebMercatorT && this.hasVertexNormals;
addAttribute(
attributesIndicesBits12.compressed0,
usingAttribute0Component4 ? 4 : 3
);
if (usingAttribute1Component1) {
addAttribute(attributesIndicesBits12.compressed1, 1);
}
if (this.hasGeodeticSurfaceNormals) {
addAttribute(attributesIndicesBits12.geodeticSurfaceNormal, 3);
}
}
return attributes;
};
TerrainEncoding.prototype.getAttributeLocations = function () {
if (this.quantization === TerrainQuantization$1.NONE) {
return attributesIndicesNone;
}
return attributesIndicesBits12;
};
TerrainEncoding.clone = function (encoding, result) {
if (!defaultValue.defined(encoding)) {
return undefined;
}
if (!defaultValue.defined(result)) {
result = new TerrainEncoding();
}
result.quantization = encoding.quantization;
result.minimumHeight = encoding.minimumHeight;
result.maximumHeight = encoding.maximumHeight;
result.center = Matrix3.Cartesian3.clone(encoding.center);
result.toScaledENU = Matrix2.Matrix4.clone(encoding.toScaledENU);
result.fromScaledENU = Matrix2.Matrix4.clone(encoding.fromScaledENU);
result.matrix = Matrix2.Matrix4.clone(encoding.matrix);
result.hasVertexNormals = encoding.hasVertexNormals;
result.hasWebMercatorT = encoding.hasWebMercatorT;
result.hasGeodeticSurfaceNormals = encoding.hasGeodeticSurfaceNormals;
result.exaggeration = encoding.exaggeration;
result.exaggerationRelativeHeight = encoding.exaggerationRelativeHeight;
result._calculateStrideAndOffsets();
return result;
};
exports.EllipsoidalOccluder = EllipsoidalOccluder;
exports.TerrainEncoding = TerrainEncoding;
}));