You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1100 lines
32 KiB

/**
* @license
* Cesium - https://github.com/CesiumGS/cesium
* Version 1.99
*
* Copyright 2011-2022 Cesium Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Columbus View (Pat. Pend.)
*
* Portions licensed separately.
* See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details.
*/
define(['exports', './ArcType-89067bf8', './arrayRemoveDuplicates-3fb00ed2', './Matrix2-f9f1b94b', './Matrix3-ea964448', './ComponentDatatype-ebdce3ba', './defaultValue-135942ca', './EllipsoidRhumbLine-6161ec8c', './GeometryAttribute-51d61732', './GeometryAttributes-899f8bd0', './GeometryPipeline-576f16cd', './IndexDatatype-fa75fe25', './Math-efde0c7b', './PolygonPipeline-cf232713', './Transforms-ac2d28a9'], (function (exports, ArcType, arrayRemoveDuplicates, Matrix2, Matrix3, ComponentDatatype, defaultValue, EllipsoidRhumbLine, GeometryAttribute, GeometryAttributes, GeometryPipeline, IndexDatatype, Math$1, PolygonPipeline, Transforms) { 'use strict';
/**
* A queue that can enqueue items at the end, and dequeue items from the front.
*
* @alias Queue
* @constructor
*/
function Queue() {
this._array = [];
this._offset = 0;
this._length = 0;
}
Object.defineProperties(Queue.prototype, {
/**
* The length of the queue.
*
* @memberof Queue.prototype
*
* @type {Number}
* @readonly
*/
length: {
get: function () {
return this._length;
},
},
});
/**
* Enqueues the specified item.
*
* @param {*} item The item to enqueue.
*/
Queue.prototype.enqueue = function (item) {
this._array.push(item);
this._length++;
};
/**
* Dequeues an item. Returns undefined if the queue is empty.
*
* @returns {*} The the dequeued item.
*/
Queue.prototype.dequeue = function () {
if (this._length === 0) {
return undefined;
}
const array = this._array;
let offset = this._offset;
const item = array[offset];
array[offset] = undefined;
offset++;
if (offset > 10 && offset * 2 > array.length) {
//compact array
this._array = array.slice(offset);
offset = 0;
}
this._offset = offset;
this._length--;
return item;
};
/**
* Returns the item at the front of the queue. Returns undefined if the queue is empty.
*
* @returns {*} The item at the front of the queue.
*/
Queue.prototype.peek = function () {
if (this._length === 0) {
return undefined;
}
return this._array[this._offset];
};
/**
* Check whether this queue contains the specified item.
*
* @param {*} item The item to search for.
*/
Queue.prototype.contains = function (item) {
return this._array.indexOf(item) !== -1;
};
/**
* Remove all items from the queue.
*/
Queue.prototype.clear = function () {
this._array.length = this._offset = this._length = 0;
};
/**
* Sort the items in the queue in-place.
*
* @param {Queue.Comparator} compareFunction A function that defines the sort order.
*/
Queue.prototype.sort = function (compareFunction) {
if (this._offset > 0) {
//compact array
this._array = this._array.slice(this._offset);
this._offset = 0;
}
this._array.sort(compareFunction);
};
/**
* @private
*/
const PolygonGeometryLibrary = {};
PolygonGeometryLibrary.computeHierarchyPackedLength = function (
polygonHierarchy,
CartesianX
) {
let numComponents = 0;
const stack = [polygonHierarchy];
while (stack.length > 0) {
const hierarchy = stack.pop();
if (!defaultValue.defined(hierarchy)) {
continue;
}
numComponents += 2;
const positions = hierarchy.positions;
const holes = hierarchy.holes;
if (defaultValue.defined(positions) && positions.length > 0) {
numComponents += positions.length * CartesianX.packedLength;
}
if (defaultValue.defined(holes)) {
const length = holes.length;
for (let i = 0; i < length; ++i) {
stack.push(holes[i]);
}
}
}
return numComponents;
};
PolygonGeometryLibrary.packPolygonHierarchy = function (
polygonHierarchy,
array,
startingIndex,
CartesianX
) {
const stack = [polygonHierarchy];
while (stack.length > 0) {
const hierarchy = stack.pop();
if (!defaultValue.defined(hierarchy)) {
continue;
}
const positions = hierarchy.positions;
const holes = hierarchy.holes;
array[startingIndex++] = defaultValue.defined(positions) ? positions.length : 0;
array[startingIndex++] = defaultValue.defined(holes) ? holes.length : 0;
if (defaultValue.defined(positions)) {
const positionsLength = positions.length;
for (
let i = 0;
i < positionsLength;
++i, startingIndex += CartesianX.packedLength
) {
CartesianX.pack(positions[i], array, startingIndex);
}
}
if (defaultValue.defined(holes)) {
const holesLength = holes.length;
for (let j = 0; j < holesLength; ++j) {
stack.push(holes[j]);
}
}
}
return startingIndex;
};
PolygonGeometryLibrary.unpackPolygonHierarchy = function (
array,
startingIndex,
CartesianX
) {
const positionsLength = array[startingIndex++];
const holesLength = array[startingIndex++];
const positions = new Array(positionsLength);
const holes = holesLength > 0 ? new Array(holesLength) : undefined;
for (
let i = 0;
i < positionsLength;
++i, startingIndex += CartesianX.packedLength
) {
positions[i] = CartesianX.unpack(array, startingIndex);
}
for (let j = 0; j < holesLength; ++j) {
holes[j] = PolygonGeometryLibrary.unpackPolygonHierarchy(
array,
startingIndex,
CartesianX
);
startingIndex = holes[j].startingIndex;
delete holes[j].startingIndex;
}
return {
positions: positions,
holes: holes,
startingIndex: startingIndex,
};
};
const distance2DScratch = new Matrix2.Cartesian2();
function getPointAtDistance2D(p0, p1, distance, length) {
Matrix2.Cartesian2.subtract(p1, p0, distance2DScratch);
Matrix2.Cartesian2.multiplyByScalar(
distance2DScratch,
distance / length,
distance2DScratch
);
Matrix2.Cartesian2.add(p0, distance2DScratch, distance2DScratch);
return [distance2DScratch.x, distance2DScratch.y];
}
const distanceScratch = new Matrix3.Cartesian3();
function getPointAtDistance(p0, p1, distance, length) {
Matrix3.Cartesian3.subtract(p1, p0, distanceScratch);
Matrix3.Cartesian3.multiplyByScalar(
distanceScratch,
distance / length,
distanceScratch
);
Matrix3.Cartesian3.add(p0, distanceScratch, distanceScratch);
return [distanceScratch.x, distanceScratch.y, distanceScratch.z];
}
PolygonGeometryLibrary.subdivideLineCount = function (p0, p1, minDistance) {
const distance = Matrix3.Cartesian3.distance(p0, p1);
const n = distance / minDistance;
const countDivide = Math.max(0, Math.ceil(Math$1.CesiumMath.log2(n)));
return Math.pow(2, countDivide);
};
const scratchCartographic0 = new Matrix3.Cartographic();
const scratchCartographic1 = new Matrix3.Cartographic();
const scratchCartographic2 = new Matrix3.Cartographic();
const scratchCartesian0 = new Matrix3.Cartesian3();
const scratchRhumbLine = new EllipsoidRhumbLine.EllipsoidRhumbLine();
PolygonGeometryLibrary.subdivideRhumbLineCount = function (
ellipsoid,
p0,
p1,
minDistance
) {
const c0 = ellipsoid.cartesianToCartographic(p0, scratchCartographic0);
const c1 = ellipsoid.cartesianToCartographic(p1, scratchCartographic1);
const rhumb = new EllipsoidRhumbLine.EllipsoidRhumbLine(c0, c1, ellipsoid);
const n = rhumb.surfaceDistance / minDistance;
const countDivide = Math.max(0, Math.ceil(Math$1.CesiumMath.log2(n)));
return Math.pow(2, countDivide);
};
/**
* Subdivides texture coordinates based on the subdivision of the associated world positions.
*
* @param {Cartesian2} t0 First texture coordinate.
* @param {Cartesian2} t1 Second texture coordinate.
* @param {Cartesian3} p0 First world position.
* @param {Cartesian3} p1 Second world position.
* @param {Number} minDistance Minimum distance for a segment.
* @param {Array<Cartesian2>} result The subdivided texture coordinates.
*
* @private
*/
PolygonGeometryLibrary.subdivideTexcoordLine = function (
t0,
t1,
p0,
p1,
minDistance,
result
) {
// Compute the number of subdivisions.
const subdivisions = PolygonGeometryLibrary.subdivideLineCount(
p0,
p1,
minDistance
);
// Compute the distance between each subdivided point.
const length2D = Matrix2.Cartesian2.distance(t0, t1);
const distanceBetweenCoords = length2D / subdivisions;
// Resize the result array.
const texcoords = result;
texcoords.length = subdivisions * 2;
// Compute texture coordinates using linear interpolation.
let index = 0;
for (let i = 0; i < subdivisions; i++) {
const t = getPointAtDistance2D(t0, t1, i * distanceBetweenCoords, length2D);
texcoords[index++] = t[0];
texcoords[index++] = t[1];
}
return texcoords;
};
PolygonGeometryLibrary.subdivideLine = function (p0, p1, minDistance, result) {
const numVertices = PolygonGeometryLibrary.subdivideLineCount(
p0,
p1,
minDistance
);
const length = Matrix3.Cartesian3.distance(p0, p1);
const distanceBetweenVertices = length / numVertices;
if (!defaultValue.defined(result)) {
result = [];
}
const positions = result;
positions.length = numVertices * 3;
let index = 0;
for (let i = 0; i < numVertices; i++) {
const p = getPointAtDistance(p0, p1, i * distanceBetweenVertices, length);
positions[index++] = p[0];
positions[index++] = p[1];
positions[index++] = p[2];
}
return positions;
};
/**
* Subdivides texture coordinates based on the subdivision of the associated world positions using a rhumb line.
*
* @param {Cartesian2} t0 First texture coordinate.
* @param {Cartesian2} t1 Second texture coordinate.
* @param {Ellipsoid} ellipsoid The ellipsoid.
* @param {Cartesian3} p0 First world position.
* @param {Cartesian3} p1 Second world position.
* @param {Number} minDistance Minimum distance for a segment.
* @param {Array<Cartesian2>} result The subdivided texture coordinates.
*
* @private
*/
PolygonGeometryLibrary.subdivideTexcoordRhumbLine = function (
t0,
t1,
ellipsoid,
p0,
p1,
minDistance,
result
) {
// Compute the surface distance.
const c0 = ellipsoid.cartesianToCartographic(p0, scratchCartographic0);
const c1 = ellipsoid.cartesianToCartographic(p1, scratchCartographic1);
scratchRhumbLine.setEndPoints(c0, c1);
const n = scratchRhumbLine.surfaceDistance / minDistance;
// Compute the number of subdivisions.
const countDivide = Math.max(0, Math.ceil(Math$1.CesiumMath.log2(n)));
const subdivisions = Math.pow(2, countDivide);
// Compute the distance between each subdivided point.
const length2D = Matrix2.Cartesian2.distance(t0, t1);
const distanceBetweenCoords = length2D / subdivisions;
// Resize the result array.
const texcoords = result;
texcoords.length = subdivisions * 2;
// Compute texture coordinates using linear interpolation.
let index = 0;
for (let i = 0; i < subdivisions; i++) {
const t = getPointAtDistance2D(t0, t1, i * distanceBetweenCoords, length2D);
texcoords[index++] = t[0];
texcoords[index++] = t[1];
}
return texcoords;
};
PolygonGeometryLibrary.subdivideRhumbLine = function (
ellipsoid,
p0,
p1,
minDistance,
result
) {
const c0 = ellipsoid.cartesianToCartographic(p0, scratchCartographic0);
const c1 = ellipsoid.cartesianToCartographic(p1, scratchCartographic1);
const rhumb = new EllipsoidRhumbLine.EllipsoidRhumbLine(c0, c1, ellipsoid);
const n = rhumb.surfaceDistance / minDistance;
const countDivide = Math.max(0, Math.ceil(Math$1.CesiumMath.log2(n)));
const numVertices = Math.pow(2, countDivide);
const distanceBetweenVertices = rhumb.surfaceDistance / numVertices;
if (!defaultValue.defined(result)) {
result = [];
}
const positions = result;
positions.length = numVertices * 3;
let index = 0;
for (let i = 0; i < numVertices; i++) {
const c = rhumb.interpolateUsingSurfaceDistance(
i * distanceBetweenVertices,
scratchCartographic2
);
const p = ellipsoid.cartographicToCartesian(c, scratchCartesian0);
positions[index++] = p.x;
positions[index++] = p.y;
positions[index++] = p.z;
}
return positions;
};
const scaleToGeodeticHeightN1 = new Matrix3.Cartesian3();
const scaleToGeodeticHeightN2 = new Matrix3.Cartesian3();
const scaleToGeodeticHeightP1 = new Matrix3.Cartesian3();
const scaleToGeodeticHeightP2 = new Matrix3.Cartesian3();
PolygonGeometryLibrary.scaleToGeodeticHeightExtruded = function (
geometry,
maxHeight,
minHeight,
ellipsoid,
perPositionHeight
) {
ellipsoid = defaultValue.defaultValue(ellipsoid, Matrix3.Ellipsoid.WGS84);
const n1 = scaleToGeodeticHeightN1;
let n2 = scaleToGeodeticHeightN2;
const p = scaleToGeodeticHeightP1;
let p2 = scaleToGeodeticHeightP2;
if (
defaultValue.defined(geometry) &&
defaultValue.defined(geometry.attributes) &&
defaultValue.defined(geometry.attributes.position)
) {
const positions = geometry.attributes.position.values;
const length = positions.length / 2;
for (let i = 0; i < length; i += 3) {
Matrix3.Cartesian3.fromArray(positions, i, p);
ellipsoid.geodeticSurfaceNormal(p, n1);
p2 = ellipsoid.scaleToGeodeticSurface(p, p2);
n2 = Matrix3.Cartesian3.multiplyByScalar(n1, minHeight, n2);
n2 = Matrix3.Cartesian3.add(p2, n2, n2);
positions[i + length] = n2.x;
positions[i + 1 + length] = n2.y;
positions[i + 2 + length] = n2.z;
if (perPositionHeight) {
p2 = Matrix3.Cartesian3.clone(p, p2);
}
n2 = Matrix3.Cartesian3.multiplyByScalar(n1, maxHeight, n2);
n2 = Matrix3.Cartesian3.add(p2, n2, n2);
positions[i] = n2.x;
positions[i + 1] = n2.y;
positions[i + 2] = n2.z;
}
}
return geometry;
};
PolygonGeometryLibrary.polygonOutlinesFromHierarchy = function (
polygonHierarchy,
scaleToEllipsoidSurface,
ellipsoid
) {
// create from a polygon hierarchy
// Algorithm adapted from http://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf
const polygons = [];
const queue = new Queue();
queue.enqueue(polygonHierarchy);
let i;
let j;
let length;
while (queue.length !== 0) {
const outerNode = queue.dequeue();
let outerRing = outerNode.positions;
if (scaleToEllipsoidSurface) {
length = outerRing.length;
for (i = 0; i < length; i++) {
ellipsoid.scaleToGeodeticSurface(outerRing[i], outerRing[i]);
}
}
outerRing = arrayRemoveDuplicates.arrayRemoveDuplicates(
outerRing,
Matrix3.Cartesian3.equalsEpsilon,
true
);
if (outerRing.length < 3) {
continue;
}
const numChildren = outerNode.holes ? outerNode.holes.length : 0;
// The outer polygon contains inner polygons
for (i = 0; i < numChildren; i++) {
const hole = outerNode.holes[i];
let holePositions = hole.positions;
if (scaleToEllipsoidSurface) {
length = holePositions.length;
for (j = 0; j < length; ++j) {
ellipsoid.scaleToGeodeticSurface(holePositions[j], holePositions[j]);
}
}
holePositions = arrayRemoveDuplicates.arrayRemoveDuplicates(
holePositions,
Matrix3.Cartesian3.equalsEpsilon,
true
);
if (holePositions.length < 3) {
continue;
}
polygons.push(holePositions);
let numGrandchildren = 0;
if (defaultValue.defined(hole.holes)) {
numGrandchildren = hole.holes.length;
}
for (j = 0; j < numGrandchildren; j++) {
queue.enqueue(hole.holes[j]);
}
}
polygons.push(outerRing);
}
return polygons;
};
PolygonGeometryLibrary.polygonsFromHierarchy = function (
polygonHierarchy,
keepDuplicates,
projectPointsTo2D,
scaleToEllipsoidSurface,
ellipsoid
) {
// create from a polygon hierarchy
// Algorithm adapted from http://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf
const hierarchy = [];
const polygons = [];
const queue = new Queue();
queue.enqueue(polygonHierarchy);
while (queue.length !== 0) {
const outerNode = queue.dequeue();
let outerRing = outerNode.positions;
const holes = outerNode.holes;
let i;
let length;
if (scaleToEllipsoidSurface) {
length = outerRing.length;
for (i = 0; i < length; i++) {
ellipsoid.scaleToGeodeticSurface(outerRing[i], outerRing[i]);
}
}
if (!keepDuplicates) {
outerRing = arrayRemoveDuplicates.arrayRemoveDuplicates(
outerRing,
Matrix3.Cartesian3.equalsEpsilon,
true
);
}
if (outerRing.length < 3) {
continue;
}
let positions2D = projectPointsTo2D(outerRing);
if (!defaultValue.defined(positions2D)) {
continue;
}
const holeIndices = [];
let originalWindingOrder = PolygonPipeline.PolygonPipeline.computeWindingOrder2D(
positions2D
);
if (originalWindingOrder === PolygonPipeline.WindingOrder.CLOCKWISE) {
positions2D.reverse();
outerRing = outerRing.slice().reverse();
}
let positions = outerRing.slice();
const numChildren = defaultValue.defined(holes) ? holes.length : 0;
const polygonHoles = [];
let j;
for (i = 0; i < numChildren; i++) {
const hole = holes[i];
let holePositions = hole.positions;
if (scaleToEllipsoidSurface) {
length = holePositions.length;
for (j = 0; j < length; ++j) {
ellipsoid.scaleToGeodeticSurface(holePositions[j], holePositions[j]);
}
}
if (!keepDuplicates) {
holePositions = arrayRemoveDuplicates.arrayRemoveDuplicates(
holePositions,
Matrix3.Cartesian3.equalsEpsilon,
true
);
}
if (holePositions.length < 3) {
continue;
}
const holePositions2D = projectPointsTo2D(holePositions);
if (!defaultValue.defined(holePositions2D)) {
continue;
}
originalWindingOrder = PolygonPipeline.PolygonPipeline.computeWindingOrder2D(
holePositions2D
);
if (originalWindingOrder === PolygonPipeline.WindingOrder.CLOCKWISE) {
holePositions2D.reverse();
holePositions = holePositions.slice().reverse();
}
polygonHoles.push(holePositions);
holeIndices.push(positions.length);
positions = positions.concat(holePositions);
positions2D = positions2D.concat(holePositions2D);
let numGrandchildren = 0;
if (defaultValue.defined(hole.holes)) {
numGrandchildren = hole.holes.length;
}
for (j = 0; j < numGrandchildren; j++) {
queue.enqueue(hole.holes[j]);
}
}
hierarchy.push({
outerRing: outerRing,
holes: polygonHoles,
});
polygons.push({
positions: positions,
positions2D: positions2D,
holes: holeIndices,
});
}
return {
hierarchy: hierarchy,
polygons: polygons,
};
};
const computeBoundingRectangleCartesian2 = new Matrix2.Cartesian2();
const computeBoundingRectangleCartesian3 = new Matrix3.Cartesian3();
const computeBoundingRectangleQuaternion = new Transforms.Quaternion();
const computeBoundingRectangleMatrix3 = new Matrix3.Matrix3();
PolygonGeometryLibrary.computeBoundingRectangle = function (
planeNormal,
projectPointTo2D,
positions,
angle,
result
) {
const rotation = Transforms.Quaternion.fromAxisAngle(
planeNormal,
angle,
computeBoundingRectangleQuaternion
);
const textureMatrix = Matrix3.Matrix3.fromQuaternion(
rotation,
computeBoundingRectangleMatrix3
);
let minX = Number.POSITIVE_INFINITY;
let maxX = Number.NEGATIVE_INFINITY;
let minY = Number.POSITIVE_INFINITY;
let maxY = Number.NEGATIVE_INFINITY;
const length = positions.length;
for (let i = 0; i < length; ++i) {
const p = Matrix3.Cartesian3.clone(
positions[i],
computeBoundingRectangleCartesian3
);
Matrix3.Matrix3.multiplyByVector(textureMatrix, p, p);
const st = projectPointTo2D(p, computeBoundingRectangleCartesian2);
if (defaultValue.defined(st)) {
minX = Math.min(minX, st.x);
maxX = Math.max(maxX, st.x);
minY = Math.min(minY, st.y);
maxY = Math.max(maxY, st.y);
}
}
result.x = minX;
result.y = minY;
result.width = maxX - minX;
result.height = maxY - minY;
return result;
};
PolygonGeometryLibrary.createGeometryFromPositions = function (
ellipsoid,
polygon,
textureCoordinates,
granularity,
perPositionHeight,
vertexFormat,
arcType
) {
let indices = PolygonPipeline.PolygonPipeline.triangulate(polygon.positions2D, polygon.holes);
/* If polygon is completely unrenderable, just use the first three vertices */
if (indices.length < 3) {
indices = [0, 1, 2];
}
const positions = polygon.positions;
const hasTexcoords = defaultValue.defined(textureCoordinates);
const texcoords = hasTexcoords ? textureCoordinates.positions : undefined;
if (perPositionHeight) {
const length = positions.length;
const flattenedPositions = new Array(length * 3);
let index = 0;
for (let i = 0; i < length; i++) {
const p = positions[i];
flattenedPositions[index++] = p.x;
flattenedPositions[index++] = p.y;
flattenedPositions[index++] = p.z;
}
const geometryOptions = {
attributes: {
position: new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE,
componentsPerAttribute: 3,
values: flattenedPositions,
}),
},
indices: indices,
primitiveType: GeometryAttribute.PrimitiveType.TRIANGLES,
};
if (hasTexcoords) {
geometryOptions.attributes.st = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
componentsPerAttribute: 2,
values: Matrix2.Cartesian2.packArray(texcoords),
});
}
const geometry = new GeometryAttribute.Geometry(geometryOptions);
if (vertexFormat.normal) {
return GeometryPipeline.GeometryPipeline.computeNormal(geometry);
}
return geometry;
}
if (arcType === ArcType.ArcType.GEODESIC) {
return PolygonPipeline.PolygonPipeline.computeSubdivision(
ellipsoid,
positions,
indices,
texcoords,
granularity
);
} else if (arcType === ArcType.ArcType.RHUMB) {
return PolygonPipeline.PolygonPipeline.computeRhumbLineSubdivision(
ellipsoid,
positions,
indices,
texcoords,
granularity
);
}
};
const computeWallTexcoordsSubdivided = [];
const computeWallIndicesSubdivided = [];
const p1Scratch = new Matrix3.Cartesian3();
const p2Scratch = new Matrix3.Cartesian3();
PolygonGeometryLibrary.computeWallGeometry = function (
positions,
textureCoordinates,
ellipsoid,
granularity,
perPositionHeight,
arcType
) {
let edgePositions;
let topEdgeLength;
let i;
let p1;
let p2;
let t1;
let t2;
let edgeTexcoords;
let topEdgeTexcoordLength;
let length = positions.length;
let index = 0;
let textureIndex = 0;
const hasTexcoords = defaultValue.defined(textureCoordinates);
const texcoords = hasTexcoords ? textureCoordinates.positions : undefined;
if (!perPositionHeight) {
const minDistance = Math$1.CesiumMath.chordLength(
granularity,
ellipsoid.maximumRadius
);
let numVertices = 0;
if (arcType === ArcType.ArcType.GEODESIC) {
for (i = 0; i < length; i++) {
numVertices += PolygonGeometryLibrary.subdivideLineCount(
positions[i],
positions[(i + 1) % length],
minDistance
);
}
} else if (arcType === ArcType.ArcType.RHUMB) {
for (i = 0; i < length; i++) {
numVertices += PolygonGeometryLibrary.subdivideRhumbLineCount(
ellipsoid,
positions[i],
positions[(i + 1) % length],
minDistance
);
}
}
topEdgeLength = (numVertices + length) * 3;
edgePositions = new Array(topEdgeLength * 2);
if (hasTexcoords) {
topEdgeTexcoordLength = (numVertices + length) * 2;
edgeTexcoords = new Array(topEdgeTexcoordLength * 2);
}
for (i = 0; i < length; i++) {
p1 = positions[i];
p2 = positions[(i + 1) % length];
let tempPositions;
let tempTexcoords;
if (hasTexcoords) {
t1 = texcoords[i];
t2 = texcoords[(i + 1) % length];
}
if (arcType === ArcType.ArcType.GEODESIC) {
tempPositions = PolygonGeometryLibrary.subdivideLine(
p1,
p2,
minDistance,
computeWallIndicesSubdivided
);
if (hasTexcoords) {
tempTexcoords = PolygonGeometryLibrary.subdivideTexcoordLine(
t1,
t2,
p1,
p2,
minDistance,
computeWallTexcoordsSubdivided
);
}
} else if (arcType === ArcType.ArcType.RHUMB) {
tempPositions = PolygonGeometryLibrary.subdivideRhumbLine(
ellipsoid,
p1,
p2,
minDistance,
computeWallIndicesSubdivided
);
if (hasTexcoords) {
tempTexcoords = PolygonGeometryLibrary.subdivideTexcoordRhumbLine(
t1,
t2,
ellipsoid,
p1,
p2,
minDistance,
computeWallTexcoordsSubdivided
);
}
}
const tempPositionsLength = tempPositions.length;
for (let j = 0; j < tempPositionsLength; ++j, ++index) {
edgePositions[index] = tempPositions[j];
edgePositions[index + topEdgeLength] = tempPositions[j];
}
edgePositions[index] = p2.x;
edgePositions[index + topEdgeLength] = p2.x;
++index;
edgePositions[index] = p2.y;
edgePositions[index + topEdgeLength] = p2.y;
++index;
edgePositions[index] = p2.z;
edgePositions[index + topEdgeLength] = p2.z;
++index;
if (hasTexcoords) {
const tempTexcoordsLength = tempTexcoords.length;
for (let k = 0; k < tempTexcoordsLength; ++k, ++textureIndex) {
edgeTexcoords[textureIndex] = tempTexcoords[k];
edgeTexcoords[textureIndex + topEdgeTexcoordLength] =
tempTexcoords[k];
}
edgeTexcoords[textureIndex] = t2.x;
edgeTexcoords[textureIndex + topEdgeTexcoordLength] = t2.x;
++textureIndex;
edgeTexcoords[textureIndex] = t2.y;
edgeTexcoords[textureIndex + topEdgeTexcoordLength] = t2.y;
++textureIndex;
}
}
} else {
topEdgeLength = length * 3 * 2;
edgePositions = new Array(topEdgeLength * 2);
if (hasTexcoords) {
topEdgeTexcoordLength = length * 2 * 2;
edgeTexcoords = new Array(topEdgeTexcoordLength * 2);
}
for (i = 0; i < length; i++) {
p1 = positions[i];
p2 = positions[(i + 1) % length];
edgePositions[index] = edgePositions[index + topEdgeLength] = p1.x;
++index;
edgePositions[index] = edgePositions[index + topEdgeLength] = p1.y;
++index;
edgePositions[index] = edgePositions[index + topEdgeLength] = p1.z;
++index;
edgePositions[index] = edgePositions[index + topEdgeLength] = p2.x;
++index;
edgePositions[index] = edgePositions[index + topEdgeLength] = p2.y;
++index;
edgePositions[index] = edgePositions[index + topEdgeLength] = p2.z;
++index;
if (hasTexcoords) {
t1 = texcoords[i];
t2 = texcoords[(i + 1) % length];
edgeTexcoords[textureIndex] = edgeTexcoords[
textureIndex + topEdgeTexcoordLength
] = t1.x;
++textureIndex;
edgeTexcoords[textureIndex] = edgeTexcoords[
textureIndex + topEdgeTexcoordLength
] = t1.y;
++textureIndex;
edgeTexcoords[textureIndex] = edgeTexcoords[
textureIndex + topEdgeTexcoordLength
] = t2.x;
++textureIndex;
edgeTexcoords[textureIndex] = edgeTexcoords[
textureIndex + topEdgeTexcoordLength
] = t2.y;
++textureIndex;
}
}
}
length = edgePositions.length;
const indices = IndexDatatype.IndexDatatype.createTypedArray(
length / 3,
length - positions.length * 6
);
let edgeIndex = 0;
length /= 6;
for (i = 0; i < length; i++) {
const UL = i;
const UR = UL + 1;
const LL = UL + length;
const LR = LL + 1;
p1 = Matrix3.Cartesian3.fromArray(edgePositions, UL * 3, p1Scratch);
p2 = Matrix3.Cartesian3.fromArray(edgePositions, UR * 3, p2Scratch);
if (
Matrix3.Cartesian3.equalsEpsilon(
p1,
p2,
Math$1.CesiumMath.EPSILON10,
Math$1.CesiumMath.EPSILON10
)
) {
//skip corner
continue;
}
indices[edgeIndex++] = UL;
indices[edgeIndex++] = LL;
indices[edgeIndex++] = UR;
indices[edgeIndex++] = UR;
indices[edgeIndex++] = LL;
indices[edgeIndex++] = LR;
}
const geometryOptions = {
attributes: new GeometryAttributes.GeometryAttributes({
position: new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE,
componentsPerAttribute: 3,
values: edgePositions,
}),
}),
indices: indices,
primitiveType: GeometryAttribute.PrimitiveType.TRIANGLES,
};
if (hasTexcoords) {
geometryOptions.attributes.st = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
componentsPerAttribute: 2,
values: edgeTexcoords,
});
}
const geometry = new GeometryAttribute.Geometry(geometryOptions);
return geometry;
};
var PolygonGeometryLibrary$1 = PolygonGeometryLibrary;
exports.PolygonGeometryLibrary = PolygonGeometryLibrary$1;
}));